Skip to main content
Log in

Intracellular Na concentration and Rb uptake in proximal convoluted tubule cells and abundance of Na/K-ATPase α1-subunit in NHE3−/− mice

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Proximal solute and fluid absorption is greatly reduced in mice in which the gene encoding the Na/H exchanger isoform 3 has been ablated (NHE3−/−). To obtain information on the intracellular functional consequences of such selective NHE3 deficiency, Na, Cl and K concentrations and cell Rb uptake were measured using electron microprobe analysis after a 30-s infusion of Rb (an index of basolateral Na/K-ATPase activity) in proximal convoluted tubule (PCT) cells of NHE3−/− and wild-type (NHE3+/+) mice. In addition, the relative abundance of the α1-subunit of the Na/K-ATPase in the outer cortex was determined by Western blot analysis. PCT cell Na concentration in NHE3−/− mice was slightly but significantly lower than in NHE3+/+ [13.1±0.6 (n=64) vs. 14.9±0.6 (n=62) mmol/kg wet wt.; means ±SEM]. The lower intracellular Na concentration was associated with significantly reduced Rb uptake rates [9.7±0.6 (n=59) vs. 14.8±0.8 (n=50) mmol/kg wet wt./30 s], but the abundance of the α1-subunit of the Na/K-ATPase was not different between NHE3−/− and NHE3+/+ mice. Intracellular Cl concentration was higher (14.2±0.4 vs. 12.8±0.4 mmol/kg wet wt.) and K concentration unchanged (122.7±2.7 vs. 121.6±2.5 mmol/kg wet wt.) in PCT cells in NHE3−/− compared with NHE3+/+ mice. These findings suggest that the elimination of apical NHE3 in PCT cells of NHE3−/− mice reduces apical Na entry and, due to lower cell Na concentrations, Na/K-ATPase activity. The observed changes in intracellular Na concentration did not affect the expression of Na/K-ATPase in the renal cortex of NHE3−/− mice. There were no significant changes of cell Na concentration and Rb uptake in distal convoluted tubule, connecting tubule, principal and intercalated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Type-I IC cells are thought to be type-A IC cells [4]. In rabbits, IC cells of the cortical collecting duct have a low membrane potential (−35 mV) and a high basolateral Cl conductance [24]. Comparatively high intracellular Cl concentrations would thus be expected. This type of IC cell is the predominant cell type in the outer medulla and mimics the intrarenal distribution of type-A IC cells [8, 34]. It should be noted that such high intracellular Cl concentrations would compromise the activity of the apical Cl/HCO3 exchanger in type-B IC cells because the concentrations of Cl in the distal tubule fluid may be below 40 mM in this tubule segment [6]. Thus, Cl concentrations in the range of those observed in type-I IC cells would diminish the chemical driving force for apical entry of Cl via electroneutral Cl/HCO3 exchange in type-B IC cells.

References

  1. Aronson PS, Giebisch G (1997) Mechanisms of chloride transport in the proximal tubule. Am J Physiol 273:F179–F192

    CAS  PubMed  Google Scholar 

  2. Barlet-Bas C, Khadouri C, Marsy S, Doucet A (1990) Enhanced intracellular sodium concentration in kidney cells recruits a latent pool of Na-K-ATPase whose size is modulated by corticosteroids. J Biol Chem 265:7799–7803

    CAS  PubMed  Google Scholar 

  3. Beck FX, Dörge A, Blümner E, Giebisch G, Thurau K (1988) Cell rubidium uptake: a method for studying functional heterogeneity in the nephron. Kidney Int 33:642–651

    CAS  PubMed  Google Scholar 

  4. Beck FX, Dörge A, Giebisch G, Thurau K (1988) Renal excretion of rubidium and potassium: an electron microprobe and clearance study. Kidney Int 34:455–462

    CAS  PubMed  Google Scholar 

  5. Beck FX, Dörge A, Giebisch G, Thurau K (1990) Effect of diuretics on cell potassium transport: an electron microprobe study. Kidney Int 37:1423–1428

    CAS  PubMed  Google Scholar 

  6. Beck FX, Dörge A, Rick R, Schramm M, Thurau K (1987) Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Pflugers Arch 409:477–485

    CAS  PubMed  Google Scholar 

  7. Beck FX, Ohno A, Dörge A, Thurau K (1994) Loop diuretics affect transcellular electrolyte transport in cells of the distal convoluted tubule. J Pharmacol Exp Ther 271:403–407

    CAS  PubMed  Google Scholar 

  8. Beck FX, Ohno A, Dörge A, Thurau K (1995) Ischemia-induced changes in cell element composition and osmolyte contents of outer medulla. Kidney Int 48:449–457

    CAS  PubMed  Google Scholar 

  9. Beck FX, Schramm M, Dörge A, Rick R, Thurau K (1988) Effect of acute metabolic acidosis on transmembrane electrolyte gradients in individual renal tubule cells. Pflugers Arch 412:427–433

    CAS  PubMed  Google Scholar 

  10. Berger UV, Peng JB, Hediger MA (2000) The membrane transporter families in mammals. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, pp 107–138

    Google Scholar 

  11. Brooks HL, Sorensen AM, Terris J, Schultheis PJ, Lorenz JN, Shull GE, Knepper MA (2001) Profiling of renal tubule Na+ transporter abundance in NHE3 and NCC null mice using targeted proteomics. J Physiol (Lond) 530:359–366

  12. Doucet A, Katz AI (1980) Renal potassium adaptation: Na-K-ATPase activity along the nephron after chronic potassium loading. Am J Physiol 238:F380–F386

    CAS  PubMed  Google Scholar 

  13. Eaton DC, Hamilton KL, Johnson KE (1984) Intracellular acidosis blocks the basolateral Na-K-pump in rabbit urinary bladder. Am J Physiol 247:F946–F954

    CAS  PubMed  Google Scholar 

  14. Flemmer A, Dörge A, Thurau K, Beck FX (1993) Transcellular sodium transport and basolateral rubidium uptake in the isolated perfused cortical collecting duct. Pflugers Arch 424:250–254

    CAS  PubMed  Google Scholar 

  15. Giebisch G, Wang W (2000) Renal tubule potassium channels: function, regulation and structure. Acta Physiol Scand 170:153–173

    Article  CAS  PubMed  Google Scholar 

  16. Gmaj P, Murer H, Kinne R (1979) Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J 15:549–557

    Google Scholar 

  17. Hurst AM, Beck JS, Laprade R, Lapointe JY (1993) Na+ pump inhibition downregulates an ATP-sensitive K+ channel in rabbit proximal convoluted tubule. Am J Physiol 264:F760–F764

    CAS  PubMed  Google Scholar 

  18. Ibarra FR, Jun Cheng SX, Agren M, Svensson LB, Aizman O, Aperia A (2002) Intracellular sodium modulates the state of protein kinase C phosphorylation of rat proximal tubule Na+,K+-ATPase. Acta Physiol Scand 175:165–171

    Article  PubMed  Google Scholar 

  19. Jörgensen PL (1980) Sodium and potassium ion pump in the kidney tubules. Physiol Rev 60:864–917

    Google Scholar 

  20. Katz AI, Doucet A, Morel F (1979) Na-K-ATPase activity along the rabbit, rat, and mouse nephron. Am J Physiol 237:F114–F120

    CAS  PubMed  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  22. Lee YC, Lin HH, Tang MJ (1995) Glucocorticoid upregulates Na-K-ATPase alpha- and beta-mRNA via an indirect mechanism in proximal tubule cell primary cultures. Am J Physiol 268:F862–F867

    CAS  PubMed  Google Scholar 

  23. Lorenz JN, Schultheis PJ, Traynor T, Shull GE, Schnermann J (1999) Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am J Physiol 277:F447–F453

    CAS  PubMed  Google Scholar 

  24. Muto S, Giebisch G, Sansom S (1987) Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am J Physiol 253:F742–F752

    CAS  PubMed  Google Scholar 

  25. Muto S, Nemoto J, Okada K, Miyata Y, Kawakami K, Saito T, Asano Y (2000) Intracellular Na+ directly modulates Na+,K+-ATPase gene expression in normal rat kidney epithelial cells. Kidney Int 57:1617–1635

    Article  CAS  PubMed  Google Scholar 

  26. Neuhofer W, Lugmayr K, Fraek ML, Beck FX (2001) Regulated overexpression of heat shock protein 72 protects Madin-Darby canine kidney cells from the detrimental effects of high urea concentrations. J Am Soc Nephrol 12:2565–2571

    CAS  PubMed  Google Scholar 

  27. O'Neil RG, Hayhurst RA (1985) Sodium-dependent modulation of the renal Na-K-ATPase: influence of mineralocorticoids on the cortical collecting duct. J Membr Biol 85:169–179

    CAS  PubMed  Google Scholar 

  28. Ohno A, Beck FX, Pfaller W, Giebisch G, Wang T (1995) Effects of chronic hyperfiltration on proximal tubule bicarbonate transport and cell electrolytes. Kidney Int 48:712–721

    CAS  PubMed  Google Scholar 

  29. Pfaller W (1982) Structure function correlation on rat kidney. Adv Anat Embryol Cell Biol 70:1–106

    CAS  PubMed  Google Scholar 

  30. Pietrini G, Matteoli M, Banker G, Caplan MJ (1992) Isoforms of the Na,K-ATPase are present in both axons and dendrites of hippocampal neurons in culture. Proc Natl Acad Sci USA 89:8414–8418

    CAS  PubMed  Google Scholar 

  31. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS, Lorenz JN, Shull GE (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nature Genet 19:282–285

    Article  CAS  PubMed  Google Scholar 

  32. Shyjan AW, Levenson R (1989) Antisera specific for the α1, α2, α 3 and β subunits of the Na,K-ATPase: differential expression of α and β subunits in rat tissue membranes. Biochemistry 28:4531–4535

    CAS  PubMed  Google Scholar 

  33. Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol 279:C541–C566

    Google Scholar 

  34. Tisher CC, Madsen KM (2000) Anatomy of the kidney. In: Brenner BM (ed) The kidney, 6th edn. Saunders, Philadelphia, pp 3–67

  35. Tsuchiya K, Wang W, Giebisch G, Welling PA (1992) ATP is a coupling modulator of parallel Na,K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci USA 89:6418–6422

    CAS  PubMed  Google Scholar 

  36. Wang T, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, Aronson PS (1999) Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol 277:F298–F302

    CAS  PubMed  Google Scholar 

  37. Wang W, Hebert SC, Giebisch G (1997) Renal K+ channels: structure and function. Annu Rev Physiol 59:413–436

    Article  CAS  PubMed  Google Scholar 

  38. Weinstein AM (2000) Sodium and chloride transport: proximal nephron. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, pp 1287–1331

    Google Scholar 

  39. Willmann JK, Bleich M, Rizzo M, Schmidt-Hieber M, Ullrich KJ, Greger R (1997) Amiloride-inhibitable Na+ conductance in rat proximal tubule. Pflugers Arch 434:173–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Deutsche Forschungsgemeinschaft (BE 963/10–1) and NIH grant DK 17433. Collaboration between the authors' laboratories was supported by a NATO collaborative research grant. The authors are indebted to Dr. M. Caplan for the gift of the Na/K-ATPase-specific antibody, to Dr. G. Shull for providing the NHE3+/+ and NHE3−/− mice (NIH grant DK 50594) and to M.L. Fraek and I. Öztürk for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-X. Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, FX., Neuhofer, W., Dörge, A. et al. Intracellular Na concentration and Rb uptake in proximal convoluted tubule cells and abundance of Na/K-ATPase α1-subunit in NHE3−/− mice. Pflugers Arch - Eur J Physiol 446, 100–105 (2003). https://doi.org/10.1007/s00424-002-1001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-002-1001-z

Keywords

Navigation