Skip to main content

Advertisement

Log in

Preoperative optimization for major hepatic resection

  • REVIEW ARTICLE
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Major hepatic resections are performed for primary hepatobiliary malignancies, metastatic disease, and benign lesions. Patients with chronic liver disease, including cirrhosis and steatosis, are at an elevated risk of malnutrition and impaired strength and exercise capacity, deficits which cause increased risk of postoperative complications and mortality. The aims of this report are to discuss the pathophysiology of changes in nutrition, exercise capacity, and muscle strength in patient populations likely to require major hepatectomy, and review recommendations for preoperative evaluation and optimization.

Methods

Nutritional and functional impairment in preoperative hepatectomy patients, especially those with underlying liver disease, have a complex and multifactorial physiologic basis that is not completely understood.

Results

Recognition of malnutrition and compromised strength and exercise tolerance preoperatively can be difficult, but is critical in providing the opportunity to intervene prior to major hepatic resection and potentially improve postoperative outcomes. There is promising data on a variety of nutritional strategies to ensure adequate intake of calories, proteins, vitamins, and minerals in patients with cirrhosis and reduce liver size and degree of fatty infiltration in patients with hepatic steatosis. Emerging evidence supports structured exercise programs to improve exercise tolerance and counteract muscle wasting.

Conclusions

The importance of nutrition and functional status in patients indicated for major liver resection is apparent, and emerging evidence supports structured preoperative preparation programs involving nutritional intervention and exercise training. Further research is needed in this field to develop optimal protocols to evaluate and treat this heterogeneous cohort of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinmann A, Braga M, Carli F, Higashiguchi T et al (2017) ESPEN guideline: clinical nutrition in surgery. Clin Nut 36(3):623–650. https://doi.org/10.1016/j.clnu.2017.02.013

    Article  Google Scholar 

  2. Sungurtekin H, Sungurtekin U, Balci C, Zencir M, Erdem E (2004) The influence of nutritional status on complications after major intraaabdominal surgery. J Am Coll Nutr 23(3):227–232. https://doi.org/10.1080/07315724.2004.10719365

    Article  PubMed  Google Scholar 

  3. Dempsey DT, Mullen J, Buzby GP (1988) The link between nutritional status and clinical outcome: can nutritional intervention modify it? Am J Clin Nutr 47(2 Suppl):352–356

    Article  CAS  PubMed  Google Scholar 

  4. Evans DC, Martindale R, Kiraly LN, Jones CM (2013) Nutrition optimization prior to surgery. Nutr Clin Pract 29(1):10–21. https://doi.org/10.1177/0884533613517006

    Article  PubMed  Google Scholar 

  5. Bozzetti F (2002) Rationale and indications for preoperative feeding of malnourished surgical cancer patients. Nutrition 18(11/12):953–959. https://doi.org/10.1016/S0899-9007(02)00988-7

    Article  PubMed  Google Scholar 

  6. Gallagher-Allred CR, Voss A, Finn SC, McCamish MA (1996) Malnutrition and clinical outcomes: the case for medical nutrition therapy. J Am Diet Assoc 96(4):361–366. https://doi.org/10.1016/S0002-8223(96)00099-5

    Article  CAS  PubMed  Google Scholar 

  7. Pichard C, Kyle U, Morabia A, Perrier A, Vermeulen B, Unger P (2004) Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay. Am J Clin Nutr 79(4):613–618

    Article  CAS  PubMed  Google Scholar 

  8. Gianotti L, Braga M, Nespoli L et al (2002) A randomized controlled trial of preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology 122(7):1763–1770. https://doi.org/10.1053/gast.2002.33587

    Article  CAS  PubMed  Google Scholar 

  9. Gustafsson UO, Oppelstrup H, Thorell A et al (2016) Adherence to the ERAS protocol is associated with 5-year survival after colorectal surgery: a retrospective cohort study. World J Surg 40(7):1741–1747. https://doi.org/10.1007/s00268-016-3460-y

    Article  PubMed  Google Scholar 

  10. Horowitz M, Neeman E, Sharon E (2015) Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol 12(4):213–226. https://doi.org/10.1038/nrclinonc.2014.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toh SY, Zarshenas N, Jorgensen J (2009) Prevalence of nutrient deficiencies in bariatric patients. Nutrition 25(11-12):1150–1156. https://doi.org/10.1016/j.nut.2009.03.012

    Article  CAS  PubMed  Google Scholar 

  12. Wells JCK (2013) Obesity as malnutrition: the dimensions beyond energy balance. Eur J Clin Nut 67(5):507–512. https://doi.org/10.1038/ejcn.2013.31

    Article  CAS  Google Scholar 

  13. Kerns JC, Arundel C, Chawla LS (2015) Thiamin deficiency in people with obesity. Adv Nutr 6(2):147–153. https://doi.org/10.3945/an.114.007526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prado CM, Cushen S, Orsso CE, Ryan AM (2016) Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc 75(02):188–198. https://doi.org/10.1017/S0029665115004279

    Article  CAS  PubMed  Google Scholar 

  15. Batsis JA, Mackenzie T, Lopez-Jimenez F, Bartels SJ (2014) Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur J Clin Nut 68(9):1001–1007. https://doi.org/10.1038/ejcn.2014.117

    Article  CAS  Google Scholar 

  16. Tsai S (2012) Importance of lean body mass in the oncologic patient. Nutr Clin Pract 27(5):593–598. https://doi.org/10.1177/0884533612457949

    Article  PubMed  Google Scholar 

  17. Brady MC, Kinn S, Stuart P, Ness V (2003) Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev 4. https://doi.org/10.1002/14651858.CD004423

  18. Reddy SK, Barbas A, Turley RS et al (2011) A standard definition of major hepatectomy: resection of four or more liver segments. HPB 13(7):494–502. https://doi.org/10.1111/j.1477-2574.2011.00330.x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ciuni R, Biondi A, Grosso G (2011) Nutritional aspects in patient undergoing liver resection. Updat Surg 63(4):249–252. https://doi.org/10.1007/s13304-011-0121-4

    Article  Google Scholar 

  20. Redaelli CA, Wagner M, Krähenbühl L, Gloor B, Schilling MK, Dufour JF, Büchler MW (2002) Liver surgery in the era of tissue-preserving resections: early and late outcome in patients with primary and secondary hepatic tumors. World J Surg 26(9):1126–1132. https://doi.org/10.1007/s00268-002-6321-9

    Article  PubMed  Google Scholar 

  21. Veteläinen R, van Vliet A, Gouma DJ, van Gulik TM (2007) Steatosis as a risk factor in liver surgery. Ann Surg 245(1):20–30. https://doi.org/10.1097/01.sla.0000225113.88433.cf

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fan ST, Lo C, Lai ECS et al (1994) Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med 331(23):1300–1306. https://doi.org/10.1056/NEJM199412083312303

    Article  Google Scholar 

  23. Van den Broek MAJ, Olde Damink S, Dejong CHC et al (2008) Liver failure after partial hepatic resection: definition, pathophysiology, risk factors and treatment. Liver Int 28(6):767–780. https://doi.org/10.1111/j.1478-3231.2008.01777.x

    Article  PubMed  CAS  Google Scholar 

  24. Altekruse SF, Henley S, Cucinelli et al (2014) Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am J Gastroenterol 109(4):542–553. https://doi.org/10.1038/ajg.2014.11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rahib L, Smith B, Aizenberg R, Rosenweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921. https://doi.org/10.1158/0008-5472.CAN-14-0155

    Article  CAS  PubMed  Google Scholar 

  26. Tang A, Hallouch O, Chernyak V et al (2017) Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol. https://doi.org/10.1007/s00261-017-1209-1

  27. White DL, Thrift A, Kanwal F et al (2017) Incidence of hepatocellular carcinoma in all 50 United States from 2000-2012. Gastroenterology 152(4):812–820. https://doi.org/10.1053/j.gastro.2016.11.020

    Article  PubMed  Google Scholar 

  28. El-Serag HB, Davila J, Petersen NJ et al (2003) The continuing increase in the incidence of hepatocellular carcinoma. Ann Intern Med 139(10):817–823. https://doi.org/10.7326/0003-4819-139-10-200311180-00009

    Article  PubMed  Google Scholar 

  29. Bruix J, Reig M, Sherman M (2016) Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 150(4):835–853. https://doi.org/10.1053/j.gastro.2015.12.041

    Article  PubMed  Google Scholar 

  30. Vitale A, Saracino E, Boccagni P et al (2009) Validation of the BCLC prognostic system in surgical hepatocellular cancer patients. Transpl Proc 41(4):1260–1263. https://doi.org/10.1016/j.transproceed.2009.03.054

    Article  CAS  Google Scholar 

  31. Katagiri S, Yamamoto M (2014) Multidisciplinary treatments for hepatocellular carcinoma with major portal vein tumor thrombus. Surg Today 44(2):219–226. https://doi.org/10.1007/s00595-013-0585-6

    Article  CAS  PubMed  Google Scholar 

  32. Kokudo T, Hasegawa K, Matsuyama Y et al (2016) Survival benefit of liver resection for hepatocellular carcinoma associated with portal vein invasion. J Hepatol 65(5):938–943. https://doi.org/10.1016/j.jhep.2016.05.044

    Article  PubMed  Google Scholar 

  33. Lee JM, Jang B, Lee YJ et al (2016) Survival outcomes of hepatic resection compared with transarterial chemoembolization or Sorafenib for hepatocellular carcinoma with portal vein tumor thrombosis. Clin Mol Hepatol 22(16):160–167. 10.18632/oncotarget.8312

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheung K, Lee S, Raman M (2012) Prevalence and mechanisms of malnutrition in patients with advanced liver disease, and nutrition management strategies. Clin Gastroenterol Hepatol 10(2):117–125. https://doi.org/10.1016/j.cgh.2011.08.016

    Article  PubMed  Google Scholar 

  35. Huisman EJ, Trip E, Siersema PD et al (2011) Protein energy malnutrition predicts complications in liver cirrhosis. Eur J Gastroenterol Hepatol 23(11):982–989. https://doi.org/10.1097/MEG.0b013e32834aa4bb

    Article  CAS  PubMed  Google Scholar 

  36. Kalaitzakis E, Simrén M, Olsson R et al (2006) Gastrointestinal symptoms in patients with liver cirrhosis: associations with nutritional status and health-related quality of life. Scand J Gastroenterol 41(12):1464–1472. https://doi.org/10.1080/00365520600825117

    Article  PubMed  Google Scholar 

  37. O’Brien A, Williams R (2008) Nutrition in end-stage liver disease: principles and practice. Gastroenterology 134:1729–1740. https://doi.org/10.1053/j.gastro.2008.02.001

    Article  PubMed  Google Scholar 

  38. Kondrup J (2006) Nutrition in end stage liver disease. Best Pract Res Clin Gastroenterol 20(3):547–560. https://doi.org/10.1016/j.bpg.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  39. Campillo B, Richardet J, Bories PN (2005) Enteral nutrition in severely malnourished and anorectic cirrhotic patients in clinical practice: benefit and prognostic factors. Gastroenterol Clin Biol 29(6-7):645–651. https://doi.org/10.1016/S0399-8320(05)82150-5

    Article  PubMed  Google Scholar 

  40. Gunsar F, Raimondo M, Jones S et al (2006) Nutritional status and prognosis in cirrhotic patients. Aliment Pharmacol Ther 24(4):563–572. https://doi.org/10.1111/j.1365-2036.2006.03003.x

    Article  CAS  PubMed  Google Scholar 

  41. Carvalho L, Parise E (2006) Evaluation of nutritional status of nonhospitalized patients with liver cirrhosis. Arq Gasteroenterol 43(4):269–274. https://doi.org/10.1590/S0004-28032006000400005

    Article  Google Scholar 

  42. Guglielmi FW, Panella C, Buda A et al (2006) Nutritional state and energy balance in cirrhotic patients with or without hypermetabolism: multicentre prospective study by the ‘Nutritional Problems in Gastroenterology’ Section of the Italian Society of Gastroenterology (SIGE). Dig Liver Dis 37(9):681–688. https://doi.org/10.1016/j.dld.2005.03.010

    Article  Google Scholar 

  43. Peng S, Plank L, McCall JL et al (2007) Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr 85(5):1257–1266

    CAS  PubMed  Google Scholar 

  44. Merli M, Nicolini G, Angeloni S et al (2002) Malnutrition is a risk factor in cirrhotic patients undergoing surgery. Nutrition 18(11-12):978–986. https://doi.org/10.1016/S0899-9007(02)00984-X

    Article  PubMed  Google Scholar 

  45. Muller MJ, Böttcher J, Selberg O (1999) Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr 69(6):1194–1201

    CAS  PubMed  Google Scholar 

  46. Riggio O, Angeloni S, Ciuffa L et al (2003) Malnutrition is not related to alterations in energy balance in patients with stable liver cirrhosis. Clin Nut 22(6):553–559. https://doi.org/10.1016/S0261-5614(03)00058-X

    Article  CAS  Google Scholar 

  47. Tsiaousi ET, Hatzitolios A, Trygonis SK et al (2008) Malnutrition in end stage liver disease: recommendations and nutritional support. J Gastroenterol Hepatol 23(4):527–533. https://doi.org/10.1111/j.1440-1746.2008.05369.x

    Article  PubMed  Google Scholar 

  48. Le Moine O, Marchant A, Groote DD et al (1995) Role of defective monocyte interleukin-10 release in tumor necrosis factor-alpha overproduction in alcoholic cirrhosis. Hepatology 22(5):1436–1439. https://doi.org/10.1002/hep.1840220516

    Article  PubMed  Google Scholar 

  49. Plauth M, Schütz E (2002) Cachexia in liver cirrhosis. Int J Cardiol 85(1):83–87. https://doi.org/10.1016/S0167-5273(02)00236-X

    Article  PubMed  Google Scholar 

  50. Marchesini G, Bianchi G, Amodio et al (2001) Factors associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology 120(1):170–178. https://doi.org/10.1053/gast.2001.21193

    Article  CAS  PubMed  Google Scholar 

  51. Owen OE, Reichle F, Mozzoli MA et al (1981) Hepatic, gut, and renal substrate flux rates in patients with hepatic cirrhosis. J Clin Invest 68(1):240–252. https://doi.org/10.1172/JCI110240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Owen OE, Trapp V, Reichard GA Jr et al (1983) Nature and quantity of fuels consumed in patients with alcoholic cirrhosis. J Clin Invest 72(5):1821–1832. https://doi.org/10.1172/JCI111142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Merli M, Leonetti F, Riggio O et al (1999) Glucose intolerance and insulin resistance in cirrhosis are normalized after liver transplantation. Hepatology 30(3):649–654. https://doi.org/10.1002/hep.510300306

    Article  CAS  PubMed  Google Scholar 

  54. Khanna S, Gopalan S (2007) Role of branched-chain amino acids in liver disease: the evidence for and against. Curr Opin Clin Nut Metab Care 10(3):297–303. https://doi.org/10.1097/MCO.0b013e3280d646b8

    Article  CAS  Google Scholar 

  55. Mardini HA, Douglass A, Record C (2006) Amino acid challenge in patients with cirrhosis and control subjects: ammonia, plasma amino acid, and EEG changes. Metab Brain Dis 21(1):1–10. https://doi.org/10.1007/s11011-006-9006-5

    Article  PubMed  CAS  Google Scholar 

  56. Moscateillo SM, Marchesini G (2007) Diabetes and liver disease: an ominous association. Nutr Metab Cardiovasc Dis 17(1):63–70. https://doi.org/10.1016/j.numecd.2006.08.004

    Article  Google Scholar 

  57. Areth J, Narra S, Nair S (2010) Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci 55(9):2624–2628. https://doi.org/10.1007/s10620-009-1069-9

    Article  CAS  Google Scholar 

  58. Detsky AS, McLaughlin J, Baker JP et al (1987) What is subjective global assessment of nutritional status? J Parenter Enter Nutr 11(1):8–13. https://doi.org/10.1177/014860718701100108

    Article  CAS  Google Scholar 

  59. Henkel AS, Buchman A (2006) Nutritional support in patients with chronic liver disease. Nat Clin Pract Gastroenterol Hepatol 3(4):202–209. https://doi.org/10.1038/ncpgasthep0443

    Article  CAS  PubMed  Google Scholar 

  60. Huynh DK, Selvanderan S, Harley HAJ et al (2015) Nutritional care in hospitalized patients with chronic liver disease. World J Gasteroenterol 21(11):12835–12842. https://doi.org/10.1097/MEG.0b013e32834aa4bb

    Article  CAS  Google Scholar 

  61. Plauth M, Cabré E, Riggio O et al (2006) ESPEN guidelines on enteral nutrition: liver disease. Clin Nut 25(2):285–294. https://doi.org/10.1016/j.clnu.2006.01.018

    Article  CAS  Google Scholar 

  62. Selberg O, Selberg D (2002) Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 86(6):509–516. https://doi.org/10.1007/s00421-001-0570-4

    Article  CAS  PubMed  Google Scholar 

  63. Pinato DJ, North B, Sharma R (2012) A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma: the prognostic nutritional index (PNI). Br J Cancer 106(8):1439–1445. https://doi.org/10.1038/bjc.2012.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chan AWH, Chan S, Wong GLH et al (2015) Prognostic nutritional index (PNI) predicts tumor recurrence of very early/early stage hepatocellular carcinoma after surgical resection. Ann Surg Oncol 22(13):4138–4148. https://doi.org/10.1245/s10434-015-4516-1

    Article  PubMed  Google Scholar 

  65. Okamura Y, Ashida R, Ito T et al (2015) Preoperative neutrophil to lymphocyte ratio and prognostic nutritional index predict overall survival after hepatectomy for hepatocellular carcinoma. World J Surg 39(6):1501–1509. https://doi.org/10.1007/s00268-015-2982-z

    Article  PubMed  Google Scholar 

  66. Takagi K, Yagi T, Umeda Y (2017) Preoperative controlling nutritional status (CONUT) score for assessment of prognosis following hepatectomy for hepatocellular carcinoma. World J Surg 41(9):2353–2360. https://doi.org/10.1007/s00268-017-3985-8

    Article  PubMed  Google Scholar 

  67. Iseki Y, Shibutani M, Maeda K et al (2015) Impact of the preoperative controlling nutritional status (CONUT) score on the survival after curative surgery for colorectal cancer. PLoS One 10(7):e0132488. https://doi.org/10.1371/journal.pone.0132488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ignacio de Ulíbarri J, G-Ma N, de Villar GP et al (2005) CONUT: a tool for controlling nutritional status: first validation in a hospital population. Nutr Hosp 20(1):38–45

    PubMed  Google Scholar 

  69. Bolder U, Brune A, Schmidt S et al (1999) Preoperative assessment of mortality risk in hepatic resection by clinical variables: a multivariate analysis. Liver Transpl Surg 5(3):227–237. https://doi.org/10.1002/lt.500050302

    Article  CAS  PubMed  Google Scholar 

  70. Schütte K, Schuls C, Malfertheiner P (2015) Nutrition and hepatocellular cancer. Gastrointest Tumors 2(4):188–194. https://doi.org/10.1159/000441822

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miwa Y, Shiraki M, Kato M et al (2000) Improvement of fuel metabolism by nocturnal energy supplementation in patients with liver cirrhosis. Hepatol Res 18(3):184–189. https://doi.org/10.1016/S1386-6346(99)00100-X

    Article  CAS  PubMed  Google Scholar 

  72. Plank LD, Gane E, Peng S et al (2008) Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology 48(2):557–566. https://doi.org/10.1002/hep.22367

    Article  PubMed  Google Scholar 

  73. Matos C, Porayko M, Francisco-Ziller N (2002) Nutrition and chronic liver disease. J Clin Gasteroenterol 35(5):391–397. https://doi.org/10.1097/00004836-200211000-00007

    Article  CAS  Google Scholar 

  74. Gluud L, Dam G, Les I, Marchesini G, Borre M, Aagaard N, Vilstrup H (2017) Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev 5. https://doi.org/10.1002/14651858.CD001939.pub4

  75. Morihara D, Iwata K, Hanano T (2012) Late-evening snack with branched-chain amino acids improves liver function after radiofrequency ablation for hepatocellular carcinoma. Hepatol Res 42(7):658–667. https://doi.org/10.1111/j.1872-034X.2012.00969.x

    Article  CAS  PubMed  Google Scholar 

  76. Nishikawa H, Osaki Y, Iguchi E et al (2013) The effect of long-term supplementation with branched-chain amino acid granules in patients with hepatitis C virus-related hepatocellular carcinoma after radiofrequency ablation. J Clin Gastroenterol 47(4):359–366. https://doi.org/10.1097/MCG.0b013e31826be9ad

    Article  CAS  PubMed  Google Scholar 

  77. Nishikawa H, Osaki Y, Inuzuka T et al (2012) Branched-chain amino acid treatment before transcatheter arterial chemoembolization for hepatocellular carcinoma. World J Gasteroenterol 18(12):1379–1384. https://doi.org/10.3748/wjg.v18.i12.1379

    Article  CAS  Google Scholar 

  78. Ichikawa K, Okabayashi T, Maeda H et al (2012) Oral supplementation of branched-chain amino acids reduces early recurrence after hepatic resection in patients with hepatocellular carcinoma: a prospective study. Surg Today 43(7):720–726. https://doi.org/10.1007/s00595-012-0288-4

    Article  PubMed  CAS  Google Scholar 

  79. Mikagi K, Kawahara R, Kinoshita H, Aoyagi S (2011) Effect of preoperative immunonutrition in patients undergoing hepatectomy; a randomized controlled trial. Kurume Med J 58:1–8

    Article  CAS  PubMed  Google Scholar 

  80. Rayes N, Seehofer D, Hansen S et al (2002) Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation 74(1):123–128. https://doi.org/10.1097/00007890-200207150-00021

    Article  PubMed  Google Scholar 

  81. Rayes N, Seehofer D, Theruvath T et al (2005) Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation—a randomized, double-blind trial. Am J Transplant 5(1):125–130. https://doi.org/10.1111/j.1600-6143.2004.00649.x

    Article  PubMed  Google Scholar 

  82. Usami M, Miyoshi M, Kanbara Y et al (2011) Effects of perioperative synbiotic treatment on infectious complications, intestinal integrity, and fecal flora and organic acids in hepatic surgery with or without cirrhosis. J Parenter Enter Nutr 35(3):317–328. https://doi.org/10.1177/0148607110379813

    Article  Google Scholar 

  83. Kanazawa H, Nagino M, Kamiya S et al (2005) Synbiotics reduce post-operative infectious complications: a randomized controlled trial in biliary cancer patients undergoing hepatectomy. Langenbeck's Arch Surg 390(2):104–113. https://doi.org/10.1007/s00423-004-0536-1

    Article  Google Scholar 

  84. Sugawara G, Nagino M, Nishio H et al (2006) Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial. Ann Surg 244(5):706–714. https://doi.org/10.1097/01.sla.0000219039.20924.88

    Article  PubMed  PubMed Central  Google Scholar 

  85. Richter B, Schmandra T, Golling M, Bechstein WO (2006) Nutritional support after open liver resection: a systematic review. Dig Surg 23(3):139–145. https://doi.org/10.1159/000094345

    Article  CAS  PubMed  Google Scholar 

  86. Pessaux P, Chenard M, Bachellier P, Jaeck D (2010) Consequences of chemotherapy on resection of colorectal liver metastases. J Visc Surg 147(4):e193–e201. https://doi.org/10.1016/j.jviscsurg.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  87. Ribeiro HSC, Costa WL Jr, Diniz AL et al (2013) Extended preoperative chemotherapy, extent of liver resection and blood transfusion are predictive factors of liver failure following resection of colorectal liver metastasis. EJSO 39(4):380–385. https://doi.org/10.1016/j.ejso.2012.12.020

    Article  CAS  PubMed  Google Scholar 

  88. Read JA, Boris Choy S, Beale PJ et al (2006) Evaluation of nutritional and inflammatory status of advanced colorectal cancer patents and its correlation with survival. Nutr Cancer 55(78–85):78–85. https://doi.org/10.1207/s15327914nc5501_10

    Article  CAS  PubMed  Google Scholar 

  89. Kleiner DE, Brunt E, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321. https://doi.org/10.1002/hep.20701

    Article  PubMed  Google Scholar 

  90. Reeves JG, Suriawinata A, Ng DP, Holubar SD, Mills JB, Barth RJ Jr (2013) Short-term preoperative diet modification reduces steatosis and blood loss in patients undergoing liver resection. Surgery 154(5):1031–1037. https://doi.org/10.1016/j.surg.2013.04.012

    Article  PubMed  Google Scholar 

  91. Sullivan S (2010) Implications of diet on nonalcoholic fatty liver disease. Curr Opin Gastroenterol 26(2):160–164. https://doi.org/10.1097/MOG.0b013e3283358a58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gholam PM, Flancbaum L, Machan JT, Charney DA, Kotler DP (2017) Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol 102(2):399–408. https://doi.org/10.1111/j.1572-0241.2006.01041.x

    Article  CAS  Google Scholar 

  93. de Meijer VE, Kalish B, Pruder M, Ijzermans JNM (2010) Systematic review and meta-analysis of steatosis as a risk factor in major hepatic resection. Br J Surg 97(9):1331–1339. https://doi.org/10.1002/bjs.7194

    Article  PubMed  Google Scholar 

  94. Gomez D, Malik H, Bonney GK, Wong V, Toogood GJ, Lodge JPA, Prasad KR (2007) Steatosis predicts postoperative morbidity following hepatic resection for colorectal metastasis. Br J Surg 94(11):1395–1402. https://doi.org/10.1002/bjs.5820

    Article  CAS  PubMed  Google Scholar 

  95. Kooby DA, Fong Y, Suriawinata A et al (2003) Impact of steatosis on perioperative outcome following hepatic resection. J Gastrointest Surg 7(8):1034–1044. https://doi.org/10.1016/j.gassur.2003.09.012

    Article  PubMed  Google Scholar 

  96. Zhao J, van Mierlo K, Gómez-Ramírez J et al (2017) Systematic review of the influence of chemotherapy-associated liver injury on outcome after partial hepatectomy for colorectal liver metastases. BJS 104(8):990–1002. https://doi.org/10.1002/bjs.10572

    Article  CAS  Google Scholar 

  97. Nomura F, Ohnishi K, Ochiai T, Okuda K (1987) Obesity-related nonalcoholic fatty liver: CT features and follow-up studies after low-calorie diet. Radiology 162(3):845–847. https://doi.org/10.1148/radiology.162.3.3809503

    Article  CAS  PubMed  Google Scholar 

  98. Fris RJ (2004) Preoperative low energy diet diminishes liver size. Obes Surg 14(9):1165–1170. https://doi.org/10.1381/0960892042386977

    Article  PubMed  Google Scholar 

  99. Ryan P, Nanji S, Pollett A, Moore M, Moulton CA, Gallinger S, Guindi M (2010) Chemotherapy-induced liver injury in metastatic colorectal cancer: semiquantitative histologic analysis of 334 resected liver specimens shows that vascular injury but not steatohepatitis is associated with preoperative chemotherapy. Am J Surg Pathol 34(6):784–791. https://doi.org/10.1097/PAS.0b013e3181dc242c

    Article  PubMed  Google Scholar 

  100. Nakano H, Oussoultzoglou E, Rosso E et al (2008) Sinusoidal injury increases morbidity after major hepatectomy in patients with colorectal liver metastases receiving preoperative chemotherapy. Ann Surg 247(1):118–124. https://doi.org/10.1097/SLA.0b013e31815774de

    Article  PubMed  Google Scholar 

  101. Vauthey JN, Pawlik T, Ribero D et al (2006) Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 24(13):2065–2072. https://doi.org/10.1200/JCO.2005.05.3074

    Article  CAS  PubMed  Google Scholar 

  102. Pawlik TM, Olino K, Gleisner A, Torbenson M, Schulick R, Choti MA (2007) Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome. J Gastrointest Surg 11(7):860–868. https://doi.org/10.1007/s11605-007-0149-4

    Article  PubMed  Google Scholar 

  103. Wolf PS, Park J, Bao F et al (2013) Preoperative chemotherapy and the risk of hepatotoxicity and morbidity after liver resection for metastatic colorectal cancer: a single institution experience. J Am Coll Surg 216(1):41–49. https://doi.org/10.1016/j.jamcollsurg.2012.08.030

    Article  PubMed  Google Scholar 

  104. Sahajpal A, Vollmer CM Jr, Dixon E et al (2007) Chemotherapy for colorectal cancer prior to liver resection for colorectal cancer hepatic metastases does not adversely affect peri-operative outcomes. J Surg Oncol 95(1):22–27. https://doi.org/10.1002/jso.20632

    Article  CAS  PubMed  Google Scholar 

  105. Scoggins CR, Campbell M, Landry CS, Slomiany BA, Woodall CE, McMasters KM, Martin RCG (2009) Preoperative chemotherapy does not increase morbidity or mortality of hepatic resection for colorectal cancer metastases. Ann Surg Oncol 16(1):35–41. https://doi.org/10.1245/s10434-008-0190-x

    Article  PubMed  Google Scholar 

  106. Karoui M, Penna C, Amin-Hashem M et al (2006) Influence of preoperative chemotherapy on the risk of major hepatectomy for colorectal liver metastases. Ann Surg 243(1):1–7. https://doi.org/10.1097/01.sla.0000193603.26265.c3

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kishi Y, Zorzi D, Contreras CM et al (2010) Extended preoperative chemotherapy does not improve pathologic response and increases postoperative liver insufficiency after hepatic resection for colorectal liver metastases. Ann Surg Oncol 17(11):2870–2876. https://doi.org/10.1245/s10434-010-1166-1

    Article  PubMed  Google Scholar 

  108. Quan D, Gallinger S, Nhan C et al (2012) The role of liver resection for colorectal cancer metastases in an era of multimodality treatment: a systematic review. Surgery 151(6):860–870. https://doi.org/10.1016/j.surg.2011.12.018

    Article  PubMed  Google Scholar 

  109. Eriksson S, Eriksson K, Bondesson L (1986) Nonalcoholic steatohepatitis in obesity: a reversible condition. Acta Med Scand 220(1):83–88. https://doi.org/10.1111/j.0954-6820.1986.tb02733.x

    Article  CAS  PubMed  Google Scholar 

  110. Jones JC, Coombes J, Macdonald GA (2012) Exercise capacity and muscle strength in patients with cirrhosis. Liver Transpl 18(2):146–151. https://doi.org/10.1002/lt.22472

    Article  PubMed  Google Scholar 

  111. Bohannon RW, Magasi S, Bubela DJ et al (2012) Grip and knee extension muscle strength reflect a common construct among adults. Muscle Nerve 46(555–558):555–558. https://doi.org/10.1002/mus.23350

    Article  PubMed  PubMed Central  Google Scholar 

  112. Campillo B, Fouet P, Bonnet JC et al (1990) Submaximal oxygen consumption in liver cirrhosis: evidence of severe functional aerobic impairment. J Hepatol 10(2):163–167. https://doi.org/10.1016/0168-8278(90)90046-T

    Article  CAS  PubMed  Google Scholar 

  113. Lemyze M, Dharancy S, Wallaert B (2013) Response to exercise in patients with liver cirrhosis: implications for liver transplantation. Dig Liver Dis 45(5):362–366. https://doi.org/10.1016/j.dld.2012.09.022

    Article  PubMed  Google Scholar 

  114. Terziyski K, Andonov V, Marinov B et al (2008) Exercise performance and ventilatory efficiency in patients with mild and moderate liver cirrhosis. Clin Exp Pharmacol Physiol 35(0):135–140. https://doi.org/10.1111/j.1440-1681.2007.04751.x

    CAS  PubMed  Google Scholar 

  115. Weisinger GF, Quittan M, Zimmermann K et al (2001) Physical performance and health-related quality of life in men on a liver transplantation waiting list. J Rehabil Med 33:260–265

    Article  Google Scholar 

  116. Epstein SK, Ciubotaru R, Zilberberg MD et al (1998) Analysis of impaired exercise capacity in patients with cirrhosis. Dig Dis Sci 43(8):1701–1707. https://doi.org/10.1023/A:1018867232562

    Article  CAS  PubMed  Google Scholar 

  117. Pieber K, Crevenna R, Nuhr MJ et al (2006) Aerobic capacity, muscle strength and health-related quality of life before and after orthotopic liver transplantation: preliminary data of an Austrian transplantation centre. J Rehabil Med 38(5):322–328. https://doi.org/10.1080/16501970600680288

    Article  PubMed  Google Scholar 

  118. Bernal W, Martin-Mateos R, Lipcsey M et al (2014) Aerobic capacity during cardiopulmonary exercise testing and survival with and without liver transplantation for patients with chronic liver disease. Liver Transpl 20(1):54–62. https://doi.org/10.1002/lt.23766

    Article  PubMed  Google Scholar 

  119. Dharancy S, Lemyze M, Boleslawski E et al (2008) Impact of impaired aerobic capacity on liver transplant candidates. Transplantation 86(8):1077–1083. https://doi.org/10.1097/TP.0b013e318187758b

    Article  PubMed  Google Scholar 

  120. Andersen H, Borre M, Jakobsen J et al (1998) Decreased muscle strength in patients with alcoholic liver cirrhosis in relation to nutritional status, alcohol abstinence, liver function, and neuropathy. Hepatology 27(5):1200–1206. https://doi.org/10.1002/hep.510270503

    Article  CAS  PubMed  Google Scholar 

  121. Tartar RE, Panzak G, Switala J et al (1997) Isokinetic muscle strength and its association with neuropsychological capacity in cirrhotic alcoholics. Alcohol Clin Exp Res 21(2):191–196. https://doi.org/10.1111/j.1530-0277.1997.tb03748.x

    Article  Google Scholar 

  122. Montano-Loza AJ, Meza-Junco J, Prado CMM (2012) Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol 10(2):166–173. https://doi.org/10.1016/j.cgh.2011.08.028

    Article  PubMed  Google Scholar 

  123. Ruiz-del-Árbol L, Serradilla R (2015) Cirrhotic cardiomyopathy. World J Gasteroenterol 21(41):11502–11521. https://doi.org/10.3748/wjg.v21.i41.11502

    Article  CAS  Google Scholar 

  124. Carey EJ, Steidley D, Aqel BA (2010) Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl 16(12):1373–1378. https://doi.org/10.1002/lt.22167

    Article  PubMed  Google Scholar 

  125. Tandon P, Low G, Mourtzakis M (2016) A model to identify sarcopenia in patients with cirrhosis. Clin Gastroenterol Hepatol 14(10):1473–1480. https://doi.org/10.1016/j.cgh.2016.04.040

    Article  PubMed  Google Scholar 

  126. Zenith L, Meena N, Ramadi A et al (2014) Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol 12(11):1920–1926. https://doi.org/10.1016/j.cgh.2014.04.016

    Article  PubMed  Google Scholar 

  127. Debette-Gratien M, Tabouret T, Antonini MT et al (2014) Personalized adapted physical activity before liver transplantation: acceptability and results. Transplantation 99(1):145–150. https://doi.org/10.1097/TP.0000000000000245

    Article  Google Scholar 

  128. Garcίa-Pagán JC, Santos C, Barberá JA et al (1996) Physical exercise increases portal pressure in patients with cirrhosis and portal hypertension. Gastroenterology 111(5):1300–1306. https://doi.org/10.1053/gast.1996.v111.pm8898644

    Article  Google Scholar 

  129. Bandi JC, García-Pagán J, Escorsell A et al (1998) Effects of propranolol on the hepatic hemodynamic response to physical exercise in patients with cirrhosis. Hepatology 28(3):667–682. https://doi.org/10.1002/hep.510280312

    Article  Google Scholar 

  130. Hulzebos EHJ, Smit Y, Helders PP JM, van Meeteren NLU (2014) Preoperative physical therapy for elective cardiac surgery patients (review). Cochrane Database Syst Rev (11). https://doi.org/10.1002/14651858.CD010118.pub2

  131. Garcia RS, Yáñez-Brage M, Moolhuyzen EG, Riobo MS, Paz AL, Mate JMB (2017) Preoperative exercise training prevents functional decline after lung resection surgery: a randomized, single-blind controlled trial. Clin Rehab 31(8):1057–1067. https://doi.org/10.1177/0269215516684179

    Article  Google Scholar 

  132. Carver TE, Mayo N, Andersen RE, Zavorsky GS (2011) Pilot investigation to evaluate changes in exercise capacity following a prehabilitation intervention among seriously obese patients awaiting bariatric surgery. Can J Diabetes 35(2):149. https://doi.org/10.1016/S1499-2671(11)52045-3

    Article  Google Scholar 

  133. Hijazi Y, Gondal U, Aziz (2017) A systematic review of prehabilitation programs in abdominal cancer surgery. Int J Surg 39:156–162. https://doi.org/10.1016/j.ijsu.2017.01.111

    Article  PubMed  Google Scholar 

  134. Dunne DEJ, Jack S, Jones RP et al (2016) Randomized clinical trial of prehabilitation before planned liver resection. Br J Surg 103(5):504–512. https://doi.org/10.1002/bjs.10096

    Article  CAS  PubMed  Google Scholar 

  135. Mayo NE, Feldman L, Scott S et al (2011) Impact of preoperative change in physical function on postoperative recovery: argument supporting prehabilitation for colorectal surgery. Surgery 150(3):505–514. https://doi.org/10.1016/j.surg.2011.07.045

    Article  PubMed  Google Scholar 

  136. Wijeysundera DN, Pearse R, Shulman MA et al (2016) Measurement of Exercise Tolerance before Surgery (METS) study: a protocol for an international multicentre prospective cohort study of cardiopulmonary exercise testing prior to major non-cardiac surgery. BMJ Open 6(3):e010359. https://doi.org/10.1136/bmjopen-2015-010359

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: Billingsley; acquisition of data: Walcott-Sapp; analysis and interpretation of data: Billingsley and Walcott-Sapp; drafting of manuscript: Billingsley and Walcott-Sapp; critical revision of manuscript: Billingsley and Walcott-Sapp.

Corresponding author

Correspondence to Sarah Walcott-Sapp.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walcott-Sapp, S., Billingsley, K.G. Preoperative optimization for major hepatic resection. Langenbecks Arch Surg 403, 23–35 (2018). https://doi.org/10.1007/s00423-017-1638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-017-1638-x

Keywords

Navigation