Skip to main content
Log in

High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We investigated the changes in constant velocity spring-mass behavior after high intensity sprint fatigue in order to better interpret the results recently reported after ultra-long distance (ULD) exercises. Our hypothesis was that after repeated sprints (RS), subjects may likely experience losses of force such as after ULD, but the necessity to modify their running pattern to attenuate the overall impact at each step (such as after ULD) may not be present. Eleven male subjects performed four sets of five 6-s sprints with 24-s recovery between sprints and 3 min between sets, on a sprint treadmill and on a bicycle ergometer. For each session, their running mechanics and spring-mass characteristics were measured at 10 and 20 km h−1 on an instrumented treadmill before and after RS. Two-way (period and velocity) ANOVAs showed that high-intensity fatigue did not induce any change in the constant velocity running pattern at low or high velocity, after both running and cycling RS, despite significant decreases (P < 0.001) in maximal power (−27.1 ± 8.2% after running RS and −15.4 ± 11.5 % after cycling RS) and knee extensors maximal voluntary force (−18.8 ± 6.7 % after running RS and −15.0 ± 7.6 % after cycling RS). These results bring indirect support to the hypothesis put forward in recent ULD studies that the changes in running mechanics observed after ULD are likely not related to the decrease in strength capabilities, but rather to the necessity for subjects to adopt a protective running pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avogadro P, Dolenec A, Belli A (2003) Changes in mechanical work during severe exhausting running. Eur J Appl Physiol 90:165–170

    Article  PubMed  Google Scholar 

  • Beckett JR, Schneiker KT, Wallman KE, Dawson BT, Guelfi KJ (2009) Effects of static stretching on repeated sprint and change of direction performance. Med Sci Sports Exerc 41:444–450

    PubMed  Google Scholar 

  • Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human musculature fatigue. Muscle Nerve 7:691–699

    Article  PubMed  CAS  Google Scholar 

  • Billaut F, Bishop DJ, Schaerz S, Noakes TD (2011) Influence of knowledge of sprint number on pacing during repeated-sprint exercise. Med Sci Sports Exerc 43:665–672

    PubMed  Google Scholar 

  • Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Borrani F, Candau R, Perrey S, Millet GY, Millet GP, Rouillon JD (2003) Does the mechanical work in running change during the VO2 slow component? Med Sci Sports Exerc 35:50–57

    Article  PubMed  Google Scholar 

  • Braun WA, Dutto DJ (2003) The effects of a single bout of downhill running and ensuing delayed onset muscle soreness on running economy performed 48 h later. Eur J Appl Physiol 90:29–34

    Article  PubMed  Google Scholar 

  • Candau R, Belli A, Millet GY, Georges D, Barbier B, Rouillon JD (1998) Energy cost and running mechanics during a treadmill run to voluntary exhaustion in humans. Eur J Appl Physiol Occup Physiol 77:479–485

    Article  PubMed  CAS  Google Scholar 

  • Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39:174–179

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Legramandi MA, Peyré-Tartaruga LA (2007) Old men running: mechanical work and elastic bounce. Proc R Soc B 275:411–418

    Article  Google Scholar 

  • Chelly SM, Denis C (2001) Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc 33:326–333

    PubMed  CAS  Google Scholar 

  • Chen TC, Nosaka K, Tu JH (2007) Changes in running economy following downhill running. J Sport Sci 25:55–63

    Article  Google Scholar 

  • Dutto DJ, Smith GA (2002) Changes in spring-mass characteristics during treadmill running to exhaustion. Med Sci Sports Exerc 34:1324–1331

    Article  PubMed  Google Scholar 

  • Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648

    Article  PubMed  CAS  Google Scholar 

  • Farley CT, Gonzalez O (1996) Leg stiffness and stride frequency in human running. J Biomech 29:181–186

    Article  PubMed  CAS  Google Scholar 

  • Farley CT, Ferris DP (1998) Biomechanics of walking and running: center of mass movements to muscle action. Exerc Sport Sci Rev 26:253–286

    Article  PubMed  CAS  Google Scholar 

  • Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86

    PubMed  CAS  Google Scholar 

  • Ferris DP, Louie M, Farley CT (1998) Running in the real world: adjusting leg stiffness for different surfaces. Proc R Soc B 265:989–994

    Article  PubMed  CAS  Google Scholar 

  • Finni T, Kyrolainen H, Avela J, Komi PV (2003) Maximal but not submaximal performance is reduced by constant-speed 10-km run. J Sports Med Phys Fitness 43:411–417

    PubMed  CAS  Google Scholar 

  • Gaitanos GC, Nevill ME, Brooks S, Williams C (1991) Repeated bouts of sprint running after induced alkalosis. J Sports Sci 9:355–370

    Article  PubMed  CAS  Google Scholar 

  • Gerlach KE, White SC HWB, Dorn JM, Leddy JJ, Horvath PJ (2005) Kinetic changes with fatigue and relationship to injury in female runners. Med Sci Sports Exerc 37:657–663

    Article  PubMed  Google Scholar 

  • Girard O, Micallef JP, Millet GP (2011) Changes in spring-mass model characteristics during repeated running sprints. Eur J Appl Physiol 111:125–134

    Article  PubMed  Google Scholar 

  • Glaister M, Howatson G, Pattison JR, McInnes G (2008) The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited. J Strength Cond Res 22:1597–1601

    Article  PubMed  Google Scholar 

  • Glaister M, Lockey RA, Abraham CS, Staerck A, Goodwin JE, McInnes G (2006) Creatine supplementation and multiple sprint running performance. J Strength Cond Res 20:273–277

    PubMed  Google Scholar 

  • Glaister M, Stone MH, Stewart AM, Hughes M, Moir GL (2005) The influence of recovery duration on multiple sprint cycling performance. J Strength Cond Res 19:831–837

    PubMed  Google Scholar 

  • Hausswirth C, Bigard XA, Guezennec CY (1997) Relationships between running mechanics and energy cost of running at the end of a triathlon and a marathon. Int J Sports Med 18:330–339

    Article  PubMed  CAS  Google Scholar 

  • He JP, Kram R, McMahon TA (1991) Mechanics of running under simulated low gravity. J Appl Physiol 71:863–870

    PubMed  CAS  Google Scholar 

  • Hobara H, Inoue K, Gomi K, Sakamoto M, Muraoka T, Iso S, Kanosue K (2010) Continuous change in spring-mass characteristics during a 400 m sprint. J Sci Med Sport 13:256–261

    Article  PubMed  Google Scholar 

  • Hughes MG, Doherty M, Tong RJ, Reilly T, Cable NT (2006) Reliability of repeated sprint exercise in non-motorised treadmill ergometry. Int J Sports Med 27:900–904

    Article  PubMed  CAS  Google Scholar 

  • Hunter I, Smith GA (2007) Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high intensity run. Eur J Appl Physiol 100:653–661

    Article  PubMed  Google Scholar 

  • Karamanidis K, Arampatzis A (2005) Mechanical and morphological properties of different muscle–tendon units in the lower extremity and running mechanics: effect of aging and physical activity. J Exp Biol 208:3907–3923

    Article  PubMed  Google Scholar 

  • Kyrolainen H, Pullinen T, Candau R, Avela J, Huttunen P, Komi PV (2000) Effects of marathon running on running economy and kinematics. Eur J Appl Physiol 82:297–304

    Article  PubMed  CAS  Google Scholar 

  • Martin V, Kerhervé H, Messonnier L, Banfi J-C, Geyssant A, Bonnefoy R, Féasson L, Millet GY (2010) Central and peripheral contributions to neuromuscular fatigue induced by a 24-hour treadmill run. J Appl Physiol 108:1224–1233

    Article  PubMed  Google Scholar 

  • McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23(Suppl 1):65–78

    Article  PubMed  Google Scholar 

  • Mendez-Villanueva A, Hamer P, Bishop D (2007) Fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc 39:2219–2225

    Article  PubMed  Google Scholar 

  • Mendez-Villanueva A, Hamer P, Bishop D (2008) Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 103:411–419

    Article  PubMed  Google Scholar 

  • Millet GY, Morin JB, Degache F, Edouard P, Féasson L, Verney J, Oullion R (2009) Running from Paris to Beijing: biomechanical and physiological consequences. Eur J Appl Physiol 107:731–738

    Article  PubMed  Google Scholar 

  • Millet GY, Tomazin K, Verges S, Vincent L, Bonnefoy R, Boisson RC, Gergelé L, Féasson L, Martin V (2011) Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One 6:e17059

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi J, Verbitsky O, Isakov E (2001) Fatigue-induced changes in decline running. Clin Biomech (Bristol, Avon) 16:207–212

    Article  CAS  Google Scholar 

  • Mizrahi J, Verbitsky O, Isakov E, Daily D (2000) Effect of fatigue on leg kinematics and impact acceleration in long distance running. Hum Mov Sci 19:139–151

    Article  Google Scholar 

  • Morgan DW, Martin PE, Baldini FD, Krahenbuhl GS (1990) Effects of a prolonged maximal run on running economy and running mechanics. Med Sci Sports Exerc 22:834–840

    PubMed  CAS  Google Scholar 

  • Morin JB, Tomazin K, Edouard P, Millet GY (2011a) Changes in running mechanics and spring-mass behavior induced by a mountain ultra-marathon race. J Biomech 44:1004–1007

    Google Scholar 

  • Morin JB, Samozino P, Millet GY (2011b) Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run. Med Sci Sports Exerc 43:829–836

    PubMed  Google Scholar 

  • Morin JB, Samozino P, Bonnefoy R, Edouard P, Belli A (2010) Direct measurement of power during one single sprint on treadmill. J Biomech 43:1970–1975

    Article  PubMed  CAS  Google Scholar 

  • Morin JB, Samozino P, Feasson L, Geyssant A, Millet G (2009a) Effects of muscular biopsy on the mechanics of running. Eur J Appl Physiol 105:185–190

    Article  PubMed  Google Scholar 

  • Morin JB, Samozino P, Peyrot N (2009b) Running pattern changes depending on the level of subjects’ awareness of the measurements performed: a “sampling effect” in human locomotion experiments? Gait Posture 30:507–510

    Article  PubMed  Google Scholar 

  • Morin JB, Samozino P, Zameziati K, Belli A (2007) Effects of altered stride frequency and contact time on leg-spring behavior in human running. J Biomech 40:3341–3348

    Article  PubMed  CAS  Google Scholar 

  • Morin JB, Jeannin T, Chevallier B, Belli A (2006) Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med 27:158–165

    Article  PubMed  Google Scholar 

  • Morin JB, Belli A (2004) A simple method for measurement of maximal downstroke power on friction-loaded cycle ergometer. J Biomech 37:141–145

    Article  PubMed  Google Scholar 

  • Nicol C, Komi PV, Marconnet P (1991a) Effects of marathon fatigue on running kinematics and economy. Scand J Med Sci Sports 1:195–204

    Article  Google Scholar 

  • Nicol C, Komi PV, Marconnet P (1991b) Fatigue effects of marathon running on neuromuscular performance. I Changes in muscle force and stiffness characteristics. Scand J Med Sci Sports 1:10–17

    Article  Google Scholar 

  • Nicol C, Komi PV (2011) Stretch-shortening cycle fatigue. In: Komi PV (ed) Encyclopedia volume, neuromuscular aspects of sports performance. Blackwell, London, pp 183–215

    Google Scholar 

  • Nummela A, Heath K, Paavolainen L, Lambert M, St Clair Gibson A, Rusko H, Noakes T (2008) Fatigue during a 5-km running time trial. Int J Sports Med 29:738–745

    Article  PubMed  CAS  Google Scholar 

  • Paavolainen L, Nummela A, Rusko H, Hakkinen K (1999) Neuromuscular characteristics and fatigue during 10 km running. Int J Sports Med 20:516–521

    Article  PubMed  CAS  Google Scholar 

  • Perrey S, Racinais S, Saimouaa K, Girard O (2010) Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol 109:1027–1036

    Article  PubMed  Google Scholar 

  • Place N, Lepers R, Deley G, Millet GY (2004) Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc 36:1347–1356

    Article  PubMed  Google Scholar 

  • Rabita G, Slawinski J, Girard O, Bignet F, Hausswirth C (2011) Spring-mass behavior during exhaustive run at constant velocity in elite triathletes. Med Sci Sports Exerc 43:685–692

    PubMed  Google Scholar 

  • Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S (2007) Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc 39:268–274

    Article  PubMed  Google Scholar 

  • Serpiello FR, McKenna MJ, Stepto NK, Bishop DJ, Aughey RJ (2011) Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach. Eur J Appl Physiol 111:669–678

    Article  PubMed  Google Scholar 

  • Slawinski J, Heubert R, Quievre J, Billat V, Hannon C (2008) Changes in spring-mass model parameters and energy cost during track running to exhaustion. J Strength Cond Res 22:930–936

    Article  PubMed  Google Scholar 

  • Slawinski JS, Billat VL (2005) Changes in internal mechanical cost during overground running to exhaustion. Med Sci Sports Exerc 37:1180–1186

    Article  PubMed  Google Scholar 

  • Spencer M, Bishop D, Dawson B, Goodman C (2005) Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med 35:1025–1044

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Gauthier Perez for his assistance in data collection, and to the subjects of this study for their willingness to perform maximal efforts until volitional fatigue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Benoit Morin.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, JB., Tomazin, K., Samozino, P. et al. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior. Eur J Appl Physiol 112, 1419–1428 (2012). https://doi.org/10.1007/s00421-011-2103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2103-0

Keywords

Navigation