Skip to main content
Log in

Electrical stimulation for testing neuromuscular function: from sport to pathology

  • Mini Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The use of electrical stimulation (ES) can contribute to our knowledge of how our neuromuscular system can adapt to physical stress or unloading. Although it has been recently challenged, the standard technique used to explore central modifications is the twitch interpolated method which consists in superimposing single twitches or high-frequency doublets on a maximal voluntary contraction (MVC) and to compare the superimposed response to the potentiated response obtained from the relaxed muscle. Alternative methods consist in (1) superimposing a train of stimuli (central activation ratio), (2) comparing the MVC response to the force evoked by a high-frequency tetanus or (3) examining the change in maximal EMG response during voluntary contractions, if this variable is normalized to the maximal M wave, i.e. EMG response to a single stimulus. ES is less used to examine supraspinal factors but it is useful for investigating changes at the spinal level, either by using H reflexes, F waves or cervicomedullary motor-evoked potentials. Peripheral changes can be examined with ES, usually by stimulating the muscle in the relaxed state. Neuromuscular propagation of action potentials on the sarcolemma (M wave, high-frequency fatigue), excitation–contraction coupling (e.g. low-frequency fatigue) and intrinsic force (high-frequency stimulation at supramaximal intensity) can all be used to non-invasively explore muscular function with ES. As for all indirect methods, there are limitations and these are discussed in this review. Finally, (1) ES as a method to measure respiratory muscle function and (2) the comparison between electrical and magnetic stimulation will also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623

    Article  PubMed  CAS  Google Scholar 

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Neural adaptation to resistance training: changes in evoked V wave and H-reflex responses. J Appl Physiol 92:2309–2318

    PubMed  Google Scholar 

  • Allen GM, Gandevia SC, Neering IR, Hickie I, Jones R, Middleton J (1994) Muscle performance, voluntary activation and perceived effort in normal subjects and patients with prior poliomyelitis. Brain 117(Pt 4):661–670

    Article  PubMed  Google Scholar 

  • Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18:593–600

    Article  PubMed  CAS  Google Scholar 

  • Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 586:161–173

    Article  PubMed  CAS  Google Scholar 

  • Aubier M, Farkas G, De Troyer A, Mozes R, Roussos C (1981) Detection of diaphragmatic fatigue in man by phrenic stimulation. J Appl Physiol 50:538–544

    PubMed  CAS  Google Scholar 

  • Awiszus F, Wahl B, Meinecke I (1997) Influence of stimulus cross talk on results of the twitch-interpolation technique at the biceps brachii muscle. Muscle Nerve 20:1187–1190

    Article  PubMed  CAS  Google Scholar 

  • Babault N, Pousson M, Ballay Y, Van Hoecke J (2001) Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol 91:2628–2634

    PubMed  CAS  Google Scholar 

  • Baudry S, Klass M, Pasquet B, Duchateau J (2007) Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions. Eur J Appl Physiol 100:515–525

    Article  PubMed  Google Scholar 

  • Behm DG, St-Pierre DM, Perez D (1996) Muscle inactivation: assessment of interpolated twitch technique. J Appl Physiol 81:2267–2273

    PubMed  CAS  Google Scholar 

  • Behm DG, Power K, Drinkwater E (2001) Comparison of interpolation and central activation ratios as measures of muscle inactivation. Muscle Nerve 24:925–934

    Article  PubMed  CAS  Google Scholar 

  • Bellemare F, Bigland-Ritchie B (1987) Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation. J Appl Physiol 62:1307–1316

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B (1981) EMG and fatigue of human voluntary and stimulated contractions. Ciba Found Symp 82:130–156

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RH (1978) Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med 54:609–614

    PubMed  CAS  Google Scholar 

  • Binder-Macleod SA, McDermond LR (1992) Changes in the force-frequency relationship of the human quadriceps femoris muscle following electrically and voluntarily induced fatigue. Phys Ther 72:95–104

    PubMed  CAS  Google Scholar 

  • Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ, Zhang SJ, Katz A, Larsson NG, Westerblad H (2008) Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol 586:175–184

    Article  PubMed  CAS  Google Scholar 

  • Burke D (2002) Effects of activity on axonal excitability: implications for motor control studies. Adv Exp Med Biol 508:33–37

    Article  PubMed  Google Scholar 

  • Chen R, Kayser B, Yan S, Macklem PT (2000) Twitch transdiaphragmatic pressure depends critically on thoracoabdominal configuration. J Appl Physiol 88:54–60

    PubMed  CAS  Google Scholar 

  • Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP (2010) Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol 298:C365–C376

    Article  CAS  Google Scholar 

  • Cupido CM, Galea V, McComas AJ (1996) Potentiation and depression of the M wave in human biceps brachii. J Physiol 491(Pt 2):541–550

    PubMed  CAS  Google Scholar 

  • Darques JL, Bendahan D, Roussel M, Giannesini B, Tagliarini F, Le Fur Y, Cozzone PJ, Jammes Y (2003) Combined in situ analysis of metabolic and myoelectrical changes associated with electrically induced fatigue. J Appl Physiol 95:1476–1484

    PubMed  CAS  Google Scholar 

  • de Haan A, Gerrits KH, de Ruiter CJ (2009) Counterpoint: the interpolated twitch does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:355–357 (discussion 357–358)

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, Kooistra RD, Paalman MI, de Haan A (2004) Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles. J Appl Physiol 97:1693–1701

    Article  PubMed  Google Scholar 

  • Dean JC, Yates LM, Collins DF (2007) Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. J Appl Physiol 103:170–176

    Article  PubMed  CAS  Google Scholar 

  • Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S (in press) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scandinavian journal of medicine & science in sports

  • Del Balso C, Cafarelli E (2007) Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training. J Appl Physiol 103:402–411

    Article  PubMed  Google Scholar 

  • Dimitrova NA, Dimitrov GV (2002) Amplitude-related characteristics of motor unit and M wave potentials during fatigue.A simulation study using literature data on intracellular potential changes found in vitro. J Electromyogr Kinesiol 12:339–349

    Article  PubMed  CAS  Google Scholar 

  • Dionne A, Parkes A, Engler B, Watson BV, Nicolle MW (2009) Determination of the best electrode position for recording of the diaphragm compound muscle action potential. Muscle Nerve 40:37–41

    Article  PubMed  Google Scholar 

  • Duchateau J (2009) Stimulation conditions can improve the validity of the interpolated twitch technique. J Appl Physiol 107:361 (discussion 367–368)

    PubMed  Google Scholar 

  • Duchateau J, Hainaut K (1984) Isometric or dynamic training: differential effects on mechanical properties of a human muscle. J Appl Physiol 56:296–301

    PubMed  CAS  Google Scholar 

  • Duchateau J, Semmler JG, Enoka RM (2006) Training adaptations in the behavior of human motor units. J Appl Physiol 101:1766–1775

    Article  PubMed  Google Scholar 

  • Edwards RH, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272:769–778

    PubMed  CAS  Google Scholar 

  • Gandevia SC (1998) Neural control in human muscle fatigue: changes in muscle afferents, motoneurones and motor cortical drive [corrected]. Acta Physiol Scand 162:275–283

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • Gandevia SC, McKenzie DK, Plassman BL (1990) Activation of human respiratory muscles during different voluntary manoeuvres. J Physiol 428:387–403

    PubMed  CAS  Google Scholar 

  • Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490(Pt 2):529–536

    PubMed  CAS  Google Scholar 

  • Gandevia SC, Herbert RD, Leeper JB (1998) Voluntary activation of human elbow flexor muscles during maximal concentric contractions. J Physiol 15(Pt 2):595–602

    Article  Google Scholar 

  • Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 521(Pt 3):749–759

    Article  PubMed  CAS  Google Scholar 

  • Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol 429:17–27

    PubMed  CAS  Google Scholar 

  • Goodall S, Romer LM, Ross EZ (2009) Voluntary activation of human knee extensors measured using transcranial magnetic stimulation. Exp Physiol 94:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Harridge SD, Magnusson G, Gordon A (1996) Skeletal muscle contractile characteristics and fatigue resistance in patients with chronic heart failure. Eur Heart J 17:896–901

    PubMed  CAS  Google Scholar 

  • Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ (2001) Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol 531:871–878

    Article  PubMed  CAS  Google Scholar 

  • Horstman AM, Beltman MJ, Gerrits KH, Koppe P, Janssen TW, Elich P, de Haan A (2008) Intrinsic muscle strength and voluntary activation of both lower limbs and functional performance after stroke. Clin Physiol Funct Imaging 28:251–261

    Article  PubMed  Google Scholar 

  • Hubmayr RD, Litchy WJ, Gay PC, Nelson SB (1989) Transdiaphragmatic twitch pressure. Effects of lung volume and chest wall shape. Am Rev Respir Dis 139:647–652

    PubMed  CAS  Google Scholar 

  • Hultman E, Sjoholm H, Jaderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141

    Article  PubMed  CAS  Google Scholar 

  • Johnson BD, Babcock MA, Suman OE, Dempsey JA (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 460:385–405

    PubMed  CAS  Google Scholar 

  • Jones DA (1996) High-and low-frequency fatigue revisited. Acta Physiol Scand 156:265–270

    Article  PubMed  CAS  Google Scholar 

  • Kremenic IJ, Ben-Avi SS, Leonhardt D, McHugh MP (2004) Transcutaneous magnetic stimulation of the quadriceps via the femoral nerve. Muscle Nerve 30:379–381

    Article  PubMed  Google Scholar 

  • Krishnan C, Allen EJ, Williams GN (2009) Torque-based triggering improves stimulus timing precision in activation tests. Muscle Nerve 40:130–133

    Article  PubMed  Google Scholar 

  • Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444

    Article  PubMed  Google Scholar 

  • Kyroussis D, Mills GH, Polkey MI, Hamnegard CH, Koulouris N, Green M, Moxham J (1996) Abdominal muscle fatigue after maximal ventilation in humans. J Appl Physiol 81:1477–1483

    PubMed  CAS  Google Scholar 

  • Kyroussis D, Polkey MI, Mills GH, Hughes PD, Moxham J, Green M (1997) Simulation of cough in man by magnetic stimulation of the thoracic nerve roots. Am J Respir Crit Care Med 156:1696–1699

    PubMed  CAS  Google Scholar 

  • Laghi F (2009) Advancing femoral nerve stimulation into the stage of science. J Appl Physiol 106:356–357

    Article  PubMed  Google Scholar 

  • Laghi F, Harrison MJ, Tobin MJ (1996) Comparison of magnetic and electrical phrenic nerve stimulation in assessment of diaphragmatic contractility. J Appl Physiol 80:1731–1742

    Article  PubMed  CAS  Google Scholar 

  • Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92:1487–1493

    PubMed  Google Scholar 

  • Lim J, Gorman RB, Saboisky JP, Gandevia SC, Butler JE (2007) Optimal electrode placement for noninvasive electrical stimulation of human abdominal muscles. J Appl Physiol 102:1612–1617

    Article  PubMed  Google Scholar 

  • Linder SH (1993) Functional electrical stimulation to enhance cough in quadriplegia. Chest 103:166–169

    Article  PubMed  CAS  Google Scholar 

  • Mador MJ, Magalang UJ, Kufel TJ (1994) Twitch potentiation following voluntary diaphragmatic contraction. Am J Respir Crit Care Med 149:739–743

    PubMed  CAS  Google Scholar 

  • Mador MJ, Rodis A, Magalang UJ, Ameen K (1996) Comparison of cervical magnetic and transcutaneous phrenic nerve stimulation before and after threshold loading. Am J Respir Crit Care Med 154:448–453

    PubMed  CAS  Google Scholar 

  • Martin A, Carpentier A, Guissard N, van Hoecke J, Duchateau J (1999) Effect of time of day on force variation in a human muscle. Muscle Nerve 22:1380–1387

    Article  PubMed  CAS  Google Scholar 

  • Martin V, Millet GY, Lattier G, Perrod L (2004a) Effects of recovery modes after knee extensor muscles eccentric contractions. Med Sci Sports Exerc 36:1907–1915

    Article  PubMed  Google Scholar 

  • Martin V, Millet GY, Martin A, Deley G, Lattier G (2004b) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97:1923–1929

    Article  PubMed  CAS  Google Scholar 

  • Martin V, Millet GY, Lattier G, Perrod L (2005) Why does knee extensor muscles torque decrease after eccentric-type exercise? J Sports Med Phys Fitness 45:143–151

    PubMed  CAS  Google Scholar 

  • Martin V, Kerhervé H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Féasson L, Millet GY (2010) Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol 108:1224–1233

    Article  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    PubMed  CAS  Google Scholar 

  • Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    Article  PubMed  CAS  Google Scholar 

  • Mettler JA, Griffin L (2010) What are the stimulation parameters that affect the extent of twitch force potentiation in the adductor pollicis muscle? Eur J Appl Physiol 110:1235–1242

    Article  PubMed  Google Scholar 

  • Metzger JM, Fitts RH (1987) Fatigue from high- and low-frequency muscle stimulation: contractile and biochemical alterations. J Appl Physiol 62:2075–2082

    PubMed  CAS  Google Scholar 

  • Mier A, Brophy C, Estenne M, Moxham J, Green M, De Troyer A (1985) Action of abdominal muscles on rib cage in humans. J Appl Physiol 58:1438–1443

    PubMed  CAS  Google Scholar 

  • Mier A, Brophy C, Moxham J, Green M (1990) Influence of lung volume and rib cage configuration on transdiaphragmatic pressure during phrenic nerve stimulation in man. Respir Physiol 80:193–202

    Article  PubMed  CAS  Google Scholar 

  • Mier-Jedrzejowicz A, Brophy C, Moxham J, Green M (1988) Assessment of diaphragm weakness. Am Rev Respir Dis 137:877–883

    PubMed  CAS  Google Scholar 

  • Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34:105–116

    Article  PubMed  Google Scholar 

  • Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G (2002) Alterations of neuromuscular function after an ultramarathon. J Appl Physiol 92:486–492

    PubMed  CAS  Google Scholar 

  • Millet GY, Martin V, Lattier G, Ballay Y (2003a) Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 94:193–198

    PubMed  CAS  Google Scholar 

  • Millet GY, Martin V, Maffiuletti NA, Martin A (2003b) Neuromuscular fatigue after a ski skating marathon. Can J Appl Physiol 28:434–445

    Article  PubMed  Google Scholar 

  • Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, Gergele L, Bonnefoy R, Féasson L, Martin V (2011) Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS ONE 6:e17059

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2008) Assessment of voluntary muscle activation using magnetic stimulation. Eur J Appl Physiol 104:49–55

    Article  PubMed  Google Scholar 

  • Orizio C, Gobbo M, Diemont B (2004) Changes of the force-frequency relationship in human tibialis anterior at fatigue. J Electromyogr Kinesiol 14:523–530

    Article  PubMed  Google Scholar 

  • Pensini M, Martin A (2004) Effect of voluntary contraction intensity on the H-reflex and V wave responses. Neurosci Lett 367:369–374

    Article  PubMed  CAS  Google Scholar 

  • Petersen NT, Taylor JL, Gandevia SC (2002) The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. J Physiol 544:277–284

    Article  PubMed  CAS  Google Scholar 

  • Place N, Lepers R, Deley G, Millet GY (2004) Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc 36:1347–1356

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495

    Article  PubMed  Google Scholar 

  • Place N, Casartelli N, Glatthorn JF, Maffiuletti NA (2010) Comparison of quadriceps inactivation between nerve and muscle stimulation. Muscle Nerve 42:894–900

    Article  PubMed  Google Scholar 

  • Polkey MI, Kyroussis D, Hamnegard CH, Mills GH, Green M, Moxham J (1996) Quadriceps strength and fatigue assessed by magnetic stimulation of the femoral nerve in man. Muscle Nerve 19:549–555

    Article  PubMed  CAS  Google Scholar 

  • Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603

    Article  PubMed  CAS  Google Scholar 

  • Rankin LL, Enoka RM, Volz KA, Stuart DG (1988) Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle. J Appl Physiol 65:2687–2695

    PubMed  CAS  Google Scholar 

  • Rassier DE, Macintosh BR (2000) Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res 33:499–508

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC (1991) Physiological studies of electric and magnetic stimulation of the human brain. Electroencephalogr Clin Neurophysiol 43:29–35

    CAS  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    PubMed  CAS  Google Scholar 

  • Rutherford OM, Jones DA, Newham DJ (1986) Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 49:1288–1291

    Article  PubMed  CAS  Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20:S135–S145

    Article  PubMed  CAS  Google Scholar 

  • Schillings ML, Kalkman JS, Janssen HM, van Engelen BG, Bleijenberg G, Zwarts MJ (2007) Experienced and physiological fatigue in neuromuscular disorders. Clin Neurophysiol 118:292–300

    Article  PubMed  CAS  Google Scholar 

  • Seynnes OR, Maffiuletti NA, Horstman AM, Narici MV (2011) Increased H-reflex excitability is not accompanied by changes in neural drive following 24 days of unilateral lower limb suspension. Muscle Nerve 42:749–755

    Google Scholar 

  • Shehu I, Peli E (2008) Phrenic nerve stimulation. Eur J Anaesthesiol Suppl 42:186–191

    Article  PubMed  CAS  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009a) Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Muscle Nerve 39:186–196

    Article  PubMed  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009b) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106:556–565

    Article  PubMed  Google Scholar 

  • Sieck GC, Mantilla CB (2009) Novel method for physiological recruitment of diaphragm motor units after upper cervical spinal cord injury. J Appl Physiol 107:641–642

    Article  PubMed  Google Scholar 

  • Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F (1991) Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 325:917–923

    Article  PubMed  CAS  Google Scholar 

  • Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84:344–350

    PubMed  CAS  Google Scholar 

  • Suzuki J, Tanaka R, Yan S, Chen R, Macklem PT, Kayser B (1999) Assessment of abdominal muscle contractility, strength, and fatigue. Am J Respir Crit Care Med 159:1052–1060

    PubMed  CAS  Google Scholar 

  • Swallow EB, Gosker HR, Ward KA, Moore AJ, Dayer MJ, Hopkinson NS, Schols AM, Moxham J, Polkey MI (2007) A novel technique for nonvolitional assessment of quadriceps muscle endurance in humans. J Appl Physiol 103:739–746

    Article  PubMed  CAS  Google Scholar 

  • Taylor JL (2007) Magnetic muscle stimulation produces fatigue without effort. J Appl Physiol 103:733–734

    Article  PubMed  Google Scholar 

  • Taylor JL (2009) Point: the interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:354–355

    Article  PubMed  Google Scholar 

  • Taylor JL, Gandevia SC (2001) Transcranial magnetic stimulation and human muscle fatigue. Muscle Nerve 24:18–29

    Article  PubMed  CAS  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551:661–671

    Article  PubMed  CAS  Google Scholar 

  • Todd G, Gorman RB, Gandevia SC (2004) Measurement and reproducibility of strength and voluntary activation of lower-limb muscles. Muscle Nerve 29:834–842

    Article  PubMed  Google Scholar 

  • Tomazin K, Verges S, Decorte N, Oulerich A, Millet GY (2010) Effects of coil characteristics for femoral nerve magnetic stimulation. Muscle Nerve 41:406–409

    Article  PubMed  Google Scholar 

  • Tomazin K, Verges S, Decorte N, Oulerich A, Maffiuletti NA, Millet GY (2011) Fat tissue alters quadriceps response to femoral nerve magnetic stimulation. Clin Neurophysiol 122:842–847

    Article  PubMed  Google Scholar 

  • Upton ARM, McComas AJ, Sica REP (1971) Potentiation of “late” responses evoked in muscles during effor. J Neurol Neurosurg Psychiatry 34:699–711

    Article  PubMed  CAS  Google Scholar 

  • Vagg R, Mogyoros I, Kiernan MC, Burke D (1998) Activity-dependent hyperpolarization of human motor axons produced by natural activity. J Physiol 507(Pt 3):919–925

    Article  PubMed  CAS  Google Scholar 

  • Vallier JM, Gruet M, Mely L, Pensini M, Brisswalter J (2011) Neuromuscular fatigue after maximal exercise in patients with cystic fibrosis. J Electromyogr Kinesiol (in press)

  • Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513(Pt 1):295–305

    Article  PubMed  Google Scholar 

  • Verges S, Maffiuletti NA, Kerherve H, Decorte N, Wuyam B, Millet GY (2009) Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. J Appl Physiol 106:701–710

    Article  PubMed  Google Scholar 

  • Westerblad H, Duty S, Allen DG (1993) Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J Appl Physiol 75:382–388

    PubMed  CAS  Google Scholar 

  • Wragg S, Aquilina R, Moran J, Ridding M, Hamnegard C, Fearn T, Green M, Moxham J (1994) Comparison of cervical magnetic stimulation and bilateral percutaneous electrical stimulation of the phrenic nerves in normal subjects. Eur Respir J 7:1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Yue GH, Ranganathan VK, Siemionow V, Liu JZ, Sahgal V (1999) Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol 54:M249–M253

    CAS  Google Scholar 

  • Zehr PE (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86:455–468

    Article  PubMed  Google Scholar 

  • Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:e348

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Y. Millet.

Additional information

Communicated by Roberto Bottinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millet, G.Y., Martin, V., Martin, A. et al. Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol 111, 2489–2500 (2011). https://doi.org/10.1007/s00421-011-1996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1996-y

Keywords

Navigation