Skip to main content
Log in

Alterations in muscular oxidative metabolism parameters in incremental treadmill exercise test in untrained rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The present study investigates the effects of incremental exercise test on muscular oxidative metabolism. Thirty-six 2-month-old male Wistar rats were distributed in seven groups that performed exercise at different levels: first level (control), second level (0.6 km/h), third level (0.6 and 0.8 km/h), fourth level (0.6, 0.8 and 1.0 km/h), fifth level (0.6, 0.8, 1.0 and 1.2 km/h), sixth level (0.6, 0.8, 1.0, 1.2 and 1.4 km/h), and seventh level (0.6, 0.8, 1.0, 1.2, 1.4 and 1.6 km/h). At the end of the exercise challenge, level of blood lactate (BL), glycogen content (MG), creatine kinase (CK), complexes (CI, CII, CIII, CIV), oxidative damage, succinate dehydrogenase (SDH), cytochrome c oxidase as well as antioxidant enzymes (SOD and CAT) expression were measured. The speed of 1.0 km/h increased BL level, while 1.2 km/h decreased MG and increased serum CK. Increased SDH expression was observed after intensity levels 6 and 7, and cytochrome c oxidase expression increased after levels 5, 6 and 7, in comparison with lower intensity levels, ETC enzyme activities increased when exercise was applied at intensities of 0.8 km/h (CI), 1.0 km/h (CII and CIII), and 1.2 km/h (CIV). The increase in SOD expression did not occur as observed for superoxide production, except for rats that underwent exercise at level 7, but CAT expression increased significantly in all levels, starting from level 3. Our results show interesting alterations in the muscular metabolism parameters, and suggest a differential response of muscle oxidative metabolism when intense exercise is applied at different speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguiló A, Tauler P, Fuentespina E, Tur JA, Córdova A, Pons A (2005) Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 84:1–7

    Article  PubMed  Google Scholar 

  • Booth FW, Baldwin KM (1996) Muscle plasticity: energy demand and supply processes. In: Handbook of physiology exercise: regulation and integration of multiple systems, chap 3, American Physiological Society, Bethesda, pp 1075–1123

  • Boveris A, Navarro A (2008) Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic Biol Med 44:224–229

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, Stevenson SC, Rangwala SM (2008) Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104:1304–1312

    Article  PubMed  CAS  Google Scholar 

  • Cardinet III GH (1997) Skeletal muscle function. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals, 5th edn. Academic, San Diego

  • Carter SL, Rennie CD, Hamilton SJ, Tarnopolsky MA (2001) Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmacol 79:386–392

    Article  PubMed  CAS  Google Scholar 

  • Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  PubMed  CAS  Google Scholar 

  • Chilibeck PD, Bell GJ, Socha T, Martin TP (1998) The effect of aerobic exercise training on the distribution of succinate dehydrogenase activity throughout muscle fibers. Can J Appl Physiol 23:74–86

    Article  PubMed  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) A review of recent studies on the metabolism of exogenous and endogenous malondialdehyde. Xen 20:901–907

    Article  CAS  Google Scholar 

  • Duncan Jr, Prasse KW (1986) Veterinary laboratory medicine, clinical pathology, 2nd edn. Iowa State University, Ames, p 285

    Google Scholar 

  • Essig DA (1996) Contractile activity-induced mitochondrial biogenesis in skeletal muscle. Exerc Sport Sci Rev 24:289–319

    Article  PubMed  CAS  Google Scholar 

  • Favier RJ, Constable SH, Chen M, Holloszy JO (1986) Endurance exercise training reduces lactate production. J Appl Physiol 61:885–889

    PubMed  CAS  Google Scholar 

  • Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC (2007) Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol 34:760–765

    Article  PubMed  CAS  Google Scholar 

  • Finaud J, Lac G, Filaire E (2006) Oxidative stress: relationship with exercise and training. Sports Med 36:327–358

    Article  PubMed  Google Scholar 

  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 29:23–36

    Article  Google Scholar 

  • Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 3:1–25

    Article  Google Scholar 

  • Gava NS, Veras-Silva AS, Negrão CE, Krieger EM (1995) Low-intensity exercise training attenuates cardiac beta-adrenergic tone during exercise in spontaneously hypertensive rats. Hypertension 26:1129–1133

    PubMed  CAS  Google Scholar 

  • Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, Yan Z (2010) PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol 298:C572–C579

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Dahly A, Shoemaker K, Goreham C, Bombardier E, Ball-Burnett M (1999) Serial effects of high-resistance and prolonged endurance training on Na+–K+ pump concentration and enzymatic activities in human vastus lateralis. Acta Physiol Scand 165:177–184

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Bombardier EB, Duhamel TA, Holloway GP, Tupling AR, Ouyang J (2008) Acute responses in muscle mitochondrial and cytosolic enzyme activities during heavy intermittent exercise. J Appl Physiol 104:931–937

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radical in biology and medicine, 2nd edn. University Press, Oxford

  • Hawley JA (2002) Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 29:218–222

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    PubMed  CAS  Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838 (review)

    Google Scholar 

  • Holloway GP, Bezaire V, Heigenhauser GJF, Tandon NN, Glatz JFC, Luiken JJFP, Bonen A, Spriet LL (2006) Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol 571:201–210

    Article  PubMed  CAS  Google Scholar 

  • Jackson MJ (2005) Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise. Philos Trans R Soc Lond B Biol Sci 360:2285–2291

    Article  PubMed  CAS  Google Scholar 

  • Kayatekin BM, Gönenç S, Açikgöz O, Uysal N, Dayt A (2002) Effects of sprint exercise on oxidative stress in skeletal muscle and liver. Eur J Appl Physiol 87:141–144

    Article  PubMed  CAS  Google Scholar 

  • Kjaer M (1998) Adrenal medulla and exercise training. Eur J Appl Physiol Occup Physiol 77:195–199

    Article  PubMed  CAS  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:1–24

    Google Scholar 

  • Koval JA, Defronzo RA, O’Doherty RM, Printz R, Ardehali H, Granner DK, Mandarino LJ (1998) Regulation of hexokinase II activity and expression in human muscle by moderate exercise. Am J Physiol 274:E304–E308

    PubMed  CAS  Google Scholar 

  • Kraniou Y, Cameron-Smith D, Misso M, Collier G, Hargreaves M (2000) Effects of exercise on GLUT-4 and glycogenin in gene expression in human skeletal muscle. J Appl Physiol 88:794–796

    Article  PubMed  CAS  Google Scholar 

  • Krieger DA, Tate CA, McMillin-Wood J, Booth FW (1980) Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol 48:23–28

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Clarkson PM (2003) Plasma creatine kinase activity and glutathione after eccentric exercise. Med Sci Sports Exerc 35:930–936

    Article  PubMed  CAS  Google Scholar 

  • Leek BT, Mudaliar SR, Henry R, Mathieu-Costello O, Richardson RS (2001) Effect of acute exercise on citrate synthase activity in trained and untrained human muscle. Am J Physiol Regul Integr Comp Physiol 280:R441–R447

    PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin’s phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mastaloudis A, Hopkins MorrowJD, DW DevarajS, Traber MG (2004) Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med 36:1329–1341

    Article  PubMed  CAS  Google Scholar 

  • Mastaloudis A, Traber MG, Carstensen K, Widrick JJ (2006) Antioxidants did not prevent muscle damage in response to an ultramarathon run. Med Sci Sports Exerc 38:72–80

    Article  PubMed  CAS  Google Scholar 

  • Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE (2007) Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. J Appl Physiol 103:21–27

    Article  PubMed  CAS  Google Scholar 

  • Millet GY, Millet GP, Lattier G, Maffiuletti NA, Candau R (2003) Alteration of neuromuscular function after a prolonged road cycling race. Int J Sports Med 24:190–194

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    Article  PubMed  CAS  Google Scholar 

  • Molnar AM, Alves AA, Pereira-da-Silva L, Macedo DV, Dabbeni-Sala F (2004) Evaluation by blue native polyacrylamide electrophoresis colorimetric staining of the effects of physical exercise on the activities of mitochondrial complexes in rat muscle. Braz J Med Biol Res 37:939–947

    Article  PubMed  CAS  Google Scholar 

  • Olert ED, Cross BM, Mcwillians AA (1993) Guide to care and use of experimental animals, 2nd edn. Canadian Council on Animal, Ottawa

    Google Scholar 

  • Olesen J, Kiilerich K, Pilegaard H (2010) PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch 460:153–162

    Article  PubMed  CAS  Google Scholar 

  • Parise G, Brose AN, Tarnopolsky MA (2005) Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Exp Gerontol 40:173–180

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Dölken G (1975) Some aspects of regulation of enzyme levels in muscle energy-supplying metabolism. Adv Enzyme Regul 13, 355–378 (review)

    Google Scholar 

  • Pinho RA, Andrades ME, Oliveira MR, Pirola AC, Zago MS, Silveira PC, Dal-Pizzol F, Moreira JC (2006) Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise. Cell Biol Int 30:848–853

    Article  PubMed  CAS  Google Scholar 

  • Poderoso JJ, Carreras MC, Cl Lisdero (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondrial and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88, 1243–1276 (review)

    Google Scholar 

  • Reid MB (2008) Free radicals and muscle fatigue: of ROS, canaries, and the IOC. Free Radic Biol Med 44, 169–179 (review)

    Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  PubMed  CAS  Google Scholar 

  • Sentürk UK, Gündüz F, Kuru O, Aktekin MR, Kipmen D, Yalçin O, Bor-Küçükatay M, Yeşilkaya A, Başkurt OK (2001) Exercise-induced oxidative stress affects erythrocytes in sedentary rats but not exercise-trained rats. J Appl Physiol 91:1999–2004

    PubMed  Google Scholar 

  • Silva LA, Silveira PC, Pinho CA, Tuon T, Dal Pizzol F, Pinho RA (2008) N-acetylcysteine supplementation and oxidative damage and inflammatory response after eccentric exercise. Int J Sport Nutr Exerc Metab 18:379–388

    PubMed  CAS  Google Scholar 

  • Tonkonogi M, Sahlin K (2002) Physical exercise and mitochondrial function in human skeletal muscle. Exerc Sport Sci Rev 30:129–137

    Article  PubMed  Google Scholar 

  • Tonkonogi M, Harris B, Sahlin K (1997) Increased activity of citrate synthase in human skeletal muscle after a single bout of prolonged exercise. Acta Physiol Scand 161:435–436

    Article  PubMed  CAS  Google Scholar 

  • Vaynman S, Ying Z, Wu A, Gomes-Pinilla F (2006) Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 4:1221–1234

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from CNPq/MCT (Brazil), CAPES/MEC (Brazil) and UNESC (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Pinho.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinho, R.A., Silva, L.D., Pinho, C.A. et al. Alterations in muscular oxidative metabolism parameters in incremental treadmill exercise test in untrained rats. Eur J Appl Physiol 112, 387–396 (2012). https://doi.org/10.1007/s00421-011-1986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1986-0

Keywords

Navigation