Skip to main content
Log in

Contraction-induced changes in TNFα and Akt-mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Resistance training results in skeletal muscle hypertrophy, but the molecular signalling mechanisms responsible for this altered phenotype are incompletely understood. We used a resistance training (RT) protocol consisting of three sessions [day 1 (d1), day 3 (d3), day 5 (d5)] separated by 48 h recovery (squat exercise, 4 sets × 10 repetitions, 3 min recovery) to determine early signalling responses to RT in rodent skeletal muscle. Six animals per group were killed 3 h after each resistance training session and 24 and 48 h after the last training session (d5). There was a robust increase in TNFα protein expression, and IKKSer180/181 and p38MAPKThr180/Tyr182 phosphorylation on d1 (P < 0.05), which abated with subsequent RT, returning to control levels by d5 for TNFα and IKKSer180/181. There was a trend for a decrease in MuRF-1 protein expression, 48 h following d5 of training (P = 0.08). Notably, muscle myofibrillar protein concentration was elevated compared to control 24 and 48 h following RT (P < 0.05). AktSer473 and mTORSer2448 phosphorylation were unchanged throughout RT. Phosphorylation of p70S6kThr389 increased 3 h post-exercise on d1, d3 and d5 (P < 0.05), whilst phosphorylation of S6Ser235/236 increased on d1 and d3 (P < 0.05). Our results show a rapid attenuation of inflammatory signalling with repeated bouts of resistance exercise, concomitant with summation in translation initiation signalling in skeletal muscle. Indeed, the cumulative effect of these signalling events was associated with myofibrillar protein accretion, which likely contributes to the early adaptations in response to resistance training overload in the skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722

    CAS  PubMed  Google Scholar 

  • Adams V, Mangner N, Gasch A, Krohne C, Gielen S, Hirner S, Thierse H-J, Witt CC, Linke A, Schuler G, Labeit S (2008) Induction of MuRF1 is essential for TNF-[alpha]-induced loss of muscle function in mice. J Mol Biol 384:48–59

    Article  CAS  PubMed  Google Scholar 

  • Ali SM, Sabatini DM (2005) Structure of S6 kinase 1 determines whether Raptor-mTOR or Rictor-mTOR phosphorylates its hydrophobic motif site. J Biol Chem 280:19445–19448

    Article  CAS  PubMed  Google Scholar 

  • Atherton PJ, Higginson JM, Singh J, Wackerhage H (2004) Concentrations of signal transduction proteins exercise and insulin responses in rat extensor digitorum longus and soleus muscles. Mol Cell Biochem 261:111–116

    Article  CAS  PubMed  Google Scholar 

  • Atherton PJ, Babraj JA, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-PGC-1&alpha; or PKB-TSC2-mTOR signalling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19:786–788

    Google Scholar 

  • Austin RL, Rune A, Bouzakri K, Zierath JR, Krook A (2008) siRNA-mediated reduction of inhibitor of nuclear factor-kappaB kinase prevents tumor necrosis factor-alpha-induced insulin resistance in human skeletal muscle. Diabetes 57:2066–2073

    Article  CAS  PubMed  Google Scholar 

  • Baar K, Esser K (1999) Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 276:C120–C127

    CAS  Google Scholar 

  • Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawerence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, Jefferson LS (2003) Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol (Lond) 553:213–220

    Article  CAS  Google Scholar 

  • Booth FW, Watson PA (1985) Control of adaptations in protein levels in response to exercise. Fed Proc 44:2293–2300

    CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. PNAS 95:1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Frantz JD, Tawa NE, Melendez PA, Oh B-C, Lidov HGW, Hasselgren P-O, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKK[beta]/NF-[kappa]B activation causes severe muscle wasting in mice. Cell 119:285–298

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Bhoj V, Seth RB (2006) Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 13:687–692

    Article  CAS  PubMed  Google Scholar 

  • Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37:737–763

    Article  PubMed  Google Scholar 

  • Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2005) Early signalling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20:190–192

    PubMed  Google Scholar 

  • Coffey VG, Reeder DW, Lancaster GI, Yeo WK, Febbraio MA, Yaspelkis BB 3rd, Hawley JA (2007) Effect of high-frequency resistance exercise on adaptive responses in skeletal muscle. Med Sci Sports Exerc 39:2135–2144

    Article  PubMed  Google Scholar 

  • Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S (2005) Influence of muscle glycogen availability on ERK1/2 and Akt signalling after resistance exercise in human skeletal muscle. J Appl Physiol 99:950–956

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ (2005) Anabolic signalling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19:422–424

    CAS  PubMed  Google Scholar 

  • Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, Rennie M (2006) Anabolic signalling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab 290:E731–E738

    Article  CAS  PubMed  Google Scholar 

  • de Alvaro C, Teruel T, Hernandez R, Lorenzo M (2004) Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner. J Biol Chem 279:17070–17078

    Article  PubMed  Google Scholar 

  • Del Aguila LF, Krishnan RK, Ulbrecht JS, Farrell PA, Correll PH, Lang CH, Zierath JR, Kirwan JP (2000) Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab 279:E206–E212

    CAS  PubMed  Google Scholar 

  • Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576:613–624

    Article  CAS  PubMed  Google Scholar 

  • Duncan ND, Williams DA, Lynch GS (1998) Adaptations in rat skeletal muscle following long-term resistance exercise training. Eur J Appl Physiol Occup Physiol 77:372–378

    Article  CAS  PubMed  Google Scholar 

  • Eliasson J, Elfegoun T, Nilsson J, Kohnke R, Ekblom B, Blomstrand E (2006) Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 291:E1197–E1205

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, Ye J (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 277:48115–48121

    Article  CAS  PubMed  Google Scholar 

  • Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18:13–24

    Article  CAS  PubMed  Google Scholar 

  • Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signalling pathways. Int J Biochem Cell Biol 37:1974–1984

    CAS  PubMed  Google Scholar 

  • Hawley JA (2002) Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 29:218–222

    Article  CAS  PubMed  Google Scholar 

  • Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006a) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signalling in skeletal muscle. Proc Natl Acad Sci USA 103:4741–4746

    Article  CAS  PubMed  Google Scholar 

  • Hornberger TA, Sukhija KB, Chien S (2006b) Regulation of mTOR by mechanically induced signalling events in skeletal muscle. Cell Cycle 5:1391–1396

    CAS  PubMed  Google Scholar 

  • Kimball SR, Jefferson LS (2004) Regulation of global and specific mRNA translation by oral administration of branched-chain amino acids. Biochem Biophys Res Commun 313:423–427

    Article  CAS  PubMed  Google Scholar 

  • Koopman R, Zorenc AHG, Gransier RJJ, Cameron-Smith D, van Loon LJC (2006) Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 290:E1245–E1252

    Article  CAS  PubMed  Google Scholar 

  • Krisan AD, Collins DE, Crain AM, Kwong CC, Singh MK, Bernard JR, Yaspelkis BB III (2004) Resistance training enhances components of the insulin signalling cascade in normal and high-fat-fed rodent skeletal muscle. J Appl Physiol 96:1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17:386–396

    Article  CAS  PubMed  Google Scholar 

  • Lai K-MV, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ (2004) Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24:9295–9304

    Article  CAS  PubMed  Google Scholar 

  • Lang CH, Frost RA, Nairn AC, MacLean DA, Vary TC (2002) TNF-alpha impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab 282:E336–E347

    CAS  PubMed  Google Scholar 

  • Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ (2005) Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3 K/Akt/mTOR) pathway. J Biol Chem 280:2737–2744

    Article  CAS  PubMed  Google Scholar 

  • Li Y-P, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB (2005) TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 19:362–370

    Article  CAS  PubMed  Google Scholar 

  • Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Dossing S, Kadi F, Koskinen SO, Jensen CH, Schroder HD, Langberg H (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol 103:425–431

    Article  CAS  PubMed  Google Scholar 

  • Mascher H, Tannerstedt J, Brink-Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E (2008) Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab 294:E43–E51

    Article  CAS  PubMed  Google Scholar 

  • Moylan JS, Smith JD, Chambers MA, McLoughlin TJ, Reid MB (2008) TNF induction of atrogin-1/MAFbx mRNA depends on Foxo4 expression but not AKT-Foxo1/3 signalling. Am J Physiol Cell Physiol 295:C986–C993

    Article  CAS  PubMed  Google Scholar 

  • Nader GA, Esser KA (2001) Intracellular signalling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90:1936–1942

    CAS  PubMed  Google Scholar 

  • Ohanna M, Sobering AK, Lapointe T, Lorenzo L, Praud C, Petroulakis E, Sonenberg N, Kelly PA, Sotiropoulos A, Pende M (2005) Atrophy of S6K1−/− skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7:286–294

    Article  CAS  PubMed  Google Scholar 

  • Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31:342–348

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Arnolds DEW, Ekberg I, Thorell A, Goodyear LJ (2004) Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochem Biophys Res Commun 319:419–425

    Article  CAS  PubMed  Google Scholar 

  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  CAS  PubMed  Google Scholar 

  • Soltow QA, Betters JL, Sellman JE, Lira VA, Long JH, Criswell DS (2006) Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med Sci Sports Exerc 38:840–846

    Article  CAS  PubMed  Google Scholar 

  • Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF/PI3 K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi C, Emanuelli B, Kahn C (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  CAS  PubMed  Google Scholar 

  • Tannerstedt J, Apro W, Blomstrand E (2009) Maximal lengthening contractions induce different signalling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol 106:1412–1418

    Article  CAS  PubMed  Google Scholar 

  • Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102:145–152

    Article  CAS  PubMed  Google Scholar 

  • Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA (2009) Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 29:1411–1420

    Article  CAS  PubMed  Google Scholar 

  • Weinheimer EM, Jemiolo B, Carroll CC, Harber MP, Haus JM, Burd NA, LeMoine JK, Trappe SW, Trappe TA (2007) Resistance exercise and cyclooxygenase (COX) expression in human skeletal muscle: implications for COX-inhibiting drugs and protein synthesis. Am J Physiol Regul Integr Comp Physiol 292:R2241–R2248

    CAS  PubMed  Google Scholar 

  • Widegren U, Jiang XJ, Krook A, Chibalin AV, Björnholm M, Tally M, Roth RA, Henriksson J, Wallberg-Henriksson H, Zierath JR (1998) Divergent effects of exercise on metabolic and mitogenic signalling pathways in human skeletal muscle. FASEB J 12:1379–1389

    CAS  PubMed  Google Scholar 

  • Yaspelkis BB III, Kvasha IA, Figueroa TY (2009) High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS-3, IKKα/β phosphorylation and decreases PI-3 kinase activity in muscle. Am J Physiol Regul Integr Comp Physiol 296:R1709–R1715

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Australian Sports Commission (to JAH and VGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon G. Coffey.

Additional information

Communicated by Roberto Bottinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karagounis, L.G., Yaspelkis, B.B., Reeder, D.W. et al. Contraction-induced changes in TNFα and Akt-mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle. Eur J Appl Physiol 109, 839–848 (2010). https://doi.org/10.1007/s00421-010-1427-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1427-5

Keywords

Navigation