Skip to main content
Log in

Biological monitoring of tungsten (and cobalt) in workers of a hard metal alloy industry

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Objectives

To evaluate a combined biomonitoring approach based on both cobalt and tungsten determination in workers of the hard metal alloy sector.

Methods

We enrolled 55 workers from a factory producing cutting tools for carpentry. Combined workroom air and biological monitoring of both cobalt and tungsten relied on inductively coupled plasma mass spectrometry determinations. Metals were determined on plasma, blood and urine samples. Urine samples from 34 unexposed subjects were also analyzed.

Results

Tungsten was determined in every collected sample. Workers showed significantly higher urinary tungsten levels than controls (pre-shift values of 4.12 vs. 0.06 μg/l on average; P < 0.0005). Both airborne and biological levels of tungsten prevailed among workers involved in wet-grinding activities. The element was excreted at higher urinary levels than cobalt and showed lower circulating (blood, plasma) concentrations. Exposure–dose relationships were apparent for tungsten biomarkers.

Conclusions

Obtained results may contribute to the development of biomarkers of exposure to tungsten. The association of such biomarkers to traditional determinations of cobalt in blood and/or urine may substantially improve the exposure assessment of workers employed in cemented carbide industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ACGIH (2008) TLVs® and BEIs®: threshold limit values for chemical and physical agents and biological exposure indices. ACGIH, Cincinnati, USA

    Google Scholar 

  • Apostoli P, Porru S, Alessio L (1994) Urinary cobalt excretion in short time occupational exposure to cobalt powders. Sci Total Environ 150:129–132. doi:10.1016/0048-9697(94)90139-2

    Article  CAS  Google Scholar 

  • CDC (2005) Third national report on human exposure to environmental chemicals. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA

  • Comite Europeen de Normalisation (CEN) standard EN 481 (1993) Workplace atmospheres: size fraction definitions for measurement of airborne particles. CEN, Brussels

    Google Scholar 

  • Commission for the Investigation of Health hazards of Chemical Compounds in the Work Area, DFG (2006) (ed) List of MAK and BAT values 2006, report no. 42. Wiley-VCH, Weinheim

  • Cugell DW, Morgan WK, Perkins DG, Rubin A (1990) The respiratory effects of cobalt. Arch Intern Med 150:177–183. doi:10.1001/archinte.150.1.177

    Article  CAS  Google Scholar 

  • De Boeck M, Lison D, Kirsch-Volders M (1998) Evaluation of the in vitro direct and indirect genotoxic effects of cobalt compounds using the alkaline comet assay. Influence of interdonor and interexperimental variability. carcinogenesis 19:2021–2029. doi:10.1093/carcin/19.11.2021

    Google Scholar 

  • Dow Chemical Company (1982). Tungsten chloride: acute toxicological properties and industrial handling hazards. US Environmental Protection Agency, Office of Toxic Substances, OTS8EH0-0592-3885S

  • Edel J, Sabbioni E, Pietra R, Rossi A, Torre M, Rizzato G, Fraioli P (1990) Trace metal lung disease: in vitro interaction of hard metals with human lung and plasma components. Sci Total Environ 95:107–117. doi:10.1016/0048-9697(90)90056-Z

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (1991). Chlorinated Drinking-water; Chlorination By-products; Some Other Halogenated Compounds; Cobalt and Cobalt Compounds. IARC Monogr Eval Carcinog Risks Humans 52. IARC, Lyon, pp. 363–472

  • International Agency for research on Cancer (2006) Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr Eval Carcinog Risks Hum 86

  • Keith LS, Wohlers DW, Moffett DB, Rosemond ZA, Agency for Toxic Substances, Disease Registry (2007) ATSDR evaluation of potential for human exposure to tungsten. Toxicol Ind Health 23:309–345. doi:10.1177/0748233707081906

    Article  CAS  Google Scholar 

  • Koutsospyros A, Braida W, Christodoulatos C, Dermatas D, Strigul N (2006) A review of tungsten: from environmental obscurity to scrutiny. J Hazard Mater 136:1–19. doi:10.1016/j.jhazmat.2005.11.007

    Article  CAS  Google Scholar 

  • Kraus T, Schramel P, Schaller KH, Zöbelein P, Weber A, Angerer J (2001) Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds. Occup Environ Med 58:631–634. doi:10.1136/oem.58.10.631

    Article  CAS  Google Scholar 

  • Kroll MH, Chesler R, Hagengruber C, Blank DW, Kestner J, Rawe M (1986) Automated determination of urinary creatinine without sample dilution: theory and practice. Clin Chem 32:446–452

    CAS  Google Scholar 

  • Larese F, Gianpietro A, Venier M, Maina G, Renzi N (2007) In vitro percutaneous absorption of metal compounds. Toxicol Lett 170:49–56. doi:10.1016/j.toxlet.2007.02.009

    Article  CAS  Google Scholar 

  • Lasfargues G, Lison D, Maldague P, Lauwerys R (1992) Comparative study of the acute lung toxicity of pure cobalt powder and cobalt–tungsten carbide mixture in rat. Toxicol Appl Pharmacol 112:41–50. doi:10.1016/0041-008X(92)90277-Y

    Article  CAS  Google Scholar 

  • Lasfargues G, Wild P, Moulin JJ, Hammon B, Rosmorduc B, Rondeau du Noyer C, Lavandier M, Moline J (1994) Lung cancer mortality in a French cohort of hard-metal workers. Am J Ind Med 26:585–595. doi:10.1002/ajim.4700260502

    Article  CAS  Google Scholar 

  • Leggett RW (1997) A model of the distribution and retention of tungsten in the human body. Sci Total Environ 206:147–165

    CAS  Google Scholar 

  • Lison D (1996) Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). Crit Rev Toxicol 26:585–616. doi:10.3109/10408449609037478

    Article  CAS  Google Scholar 

  • Lison D (2007) Cobalt. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT (eds) Handbook on the toxicology of metals, 3rd edn. Elsevier, Amsterdam, pp 511–528

    Google Scholar 

  • Lison D, Lauwerys R (1994) Cobalt bioavailability from hard metal particles. Further evidence that cobalt alone is not responsible for the toxicity of hard metal particles. Arch Toxicol 68:528–531. doi:10.1007/s002040050108

    Article  CAS  Google Scholar 

  • Lison D, Buchet JP, Swennen B, Molders J, Lauwerys R (1994) Biological monitoring of workers exposed to cobalt metal, salt, oxides, and hard metal dust. Occup Environ Med 51:447–450. doi:10.1136/oem.51.7.447

    Article  CAS  Google Scholar 

  • Lison D, Carbonnelle P, Mollo L, Lauwerys R, Fubini B (1995) Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. Chem Res Toxicol 8:600–606. doi:10.1021/tx00046a015

    Article  CAS  Google Scholar 

  • Lison D, De Boeck M, Verougstraete V, Kirsch-Volders M (2001) Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med 58:619–625. doi:10.1136/oem.58.10.619

    Article  CAS  Google Scholar 

  • Merritt K, Brown SA, Sharkey NA (1984) The binding of metal salts and corrosion products to cells and proteins in vitro. J Biomed Mater Res 18:1005–1015. doi:10.1002/jbm.820180905

    Article  CAS  Google Scholar 

  • Moriyama H, Kobayashi M, Takada T, Shimizu T, Terada M, Narita J, Maruyama M, Watanabe K, Suzuki E, Gejyo F (2007) Two-dimensional analysis of elements and mononuclear cells in hard metal lung disease. Am J Respir Crit Care Med 176:70–77. doi:10.1164/rccm.200601-134OC

    Article  Google Scholar 

  • Moulin JJ, Wild P, Romazini S, Lasfargues G, Peltier A, Bozec C, Deguerry P, Pellet F, Perdrix A (1998) Lung cancer risk in hard-metal workers. Am J Epidemiol 148:241–248

    CAS  Google Scholar 

  • NIOSH (1977) Occupational exposure to tungsten and cemented carbide. pp 21–171

  • Rodríguez-Fariñas N, Gomez-Gomez MM, Camara-Rica C (2008) Study of tungstate-protein interaction in human serum by LC-ICP-MS and MALDI-TOF. Anal Bioanal Chem 390:29–35. doi:10.1007/s00216-007-1636-x

    Article  CAS  Google Scholar 

  • Sheppard PR, Speakman RJ, Ridenour G, Witten ML (2007) Temporal variability of tungsten and cobalt in Fallon, Nevada. Environ Health Perspect 115:715–719

    Article  CAS  Google Scholar 

  • Swennen B, Buchet JP, Stánescu D, Lison D, Lauwerys R (1993) Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal. Br J Ind Med 50:835–842

    CAS  Google Scholar 

  • Veien NK, Svejgaard E (1978) Lymphocyte transformation in patients with cobalt dermatitis. Br J Dermatol 99:191–196

    Article  CAS  Google Scholar 

  • Zanetti G, Fubini B (1997) Surface interaction between metallic cobalt and tungsten carbide particles as a primary cause of hard metal lung disease. J Mater Chem 7:1647–1654

    Article  CAS  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Palma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Palma, G., Manini, P., Sarnico, M. et al. Biological monitoring of tungsten (and cobalt) in workers of a hard metal alloy industry. Int Arch Occup Environ Health 83, 173–181 (2010). https://doi.org/10.1007/s00420-009-0434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-009-0434-5

Keywords

Navigation