Skip to main content
Log in

Effects of the magneto-electro-elastic layer on the CNTRC cylindrical shell

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the classical theory cylindrical shell, the object of the present investigation is to give analytical solutions to illustrate the effect of the magneto-electro-elastic (MEE) material layer properties on the nonlinear vibration of smart sandwich cylindrical shell supported by elastic foundations and subjected to the combination of external pressure, thermal, electric and magnetic loads. This work takes advantage of the sandwich shell configuration with three layers: two MEE face sheets and a carbon nanotube reinforced nano-composite core to analyze the vibration problem. In each MEE face sheet, the volume fraction of \({\text{BaTiO}}_{3}\)\({\text{CoFe}}_{2} {\text{O}}_{4}\) is chosen to be 0.5, and for the core layer, three types of CNT distribution such as FG-O, FG-V and FG-X are considered. The reliability of present results is evaluated by comparing with the previous results based on a different approach. In addition, the special type of the cylindrical shell, elliptical cylindrical shell, is also investigated in the results section to evaluate the effect of the structural form on the nonlinear vibration when the MEE layer is added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vinyas, M., Kattimani, S.C.: Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads. Compos. Struct. 163, 216–237 (2017). https://doi.org/10.1016/j.compstruct.2016.12.040

    Article  Google Scholar 

  2. Kiran, M.C., Kattimani, S.C., Vinyas, M.: Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate. Compos. Struct. 191, 36–77 (2018). https://doi.org/10.1016/j.compstruct.2018.02.023

    Article  Google Scholar 

  3. Vinyas, M., Kattimani, S.C.: Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis. Compos. Struct. 180, 617–637 (2017). https://doi.org/10.1016/j.compstruct.2017.08.015

    Article  Google Scholar 

  4. Vinyas, M.: Vibration control of skew magneto-electro-elastic plates using active constrained layer damping. Compos. Struct. (2018). https://doi.org/10.1016/j.compstruct.2018.10.046

    Article  Google Scholar 

  5. Vinyas, M., Kattimani, S.C.: Investigation of the effect of BaTiO3/CoFe 2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates. Compos. Struct. 185, 51–64 (2018). https://doi.org/10.1016/j.compstruct.2017.10.073

    Article  Google Scholar 

  6. Vinyas, M.: A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos. Part B Eng. (2018). https://doi.org/10.1016/j.compositesb.2018.09.086

    Article  Google Scholar 

  7. Vinyas, M., Harursampath, D., Nguyen-Thoi, T.: Influence of active constrained layer damping on the coupled vibration response of functionally graded magneto-electro-elastic plates with skewed edges. Defence Technol. (2019). https://doi.org/10.1016/j.dt.2019.11.016

    Article  Google Scholar 

  8. Vinyas, M., Sunny, K.K., Harursampath, D., Nguyen-Thoi, T., Loja, M.A.R.: Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates. Compos. Struct. 226, 111254 (2019). https://doi.org/10.1016/j.compstruct.2019.111254

    Article  Google Scholar 

  9. Vinyas, M., Kattimani, S.C.: Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory. Compos. Struct. 202, 1339–1352 (2018). https://doi.org/10.1016/j.compstruct.2018.06.069

    Article  Google Scholar 

  10. Vinyas, M., Kattimani, S.C.: Influence of coupled material properties of BaTiO3 and CoFe2O4 on the static behavior of thermo-mechanically loaded magneto-electro-elastic beam. Mater. Today Proc. 5(2), 7410–7419 (2018). https://doi.org/10.1016/j.matpr.2017.11.412

    Article  Google Scholar 

  11. Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F., Duc, N.D.: Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos. Struct. 214, 132–142 (2019). https://doi.org/10.1016/j.compstruct.2019.02.010

    Article  Google Scholar 

  12. Vinyas, M.: On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Compos. Struct. 240, 112044 (2020). https://doi.org/10.1016/j.compstruct.2020.112044

    Article  Google Scholar 

  13. Vinyas, M., Harursampath, D., Kattimani, S.C.: On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods. Defence Technol. (2020). https://doi.org/10.1016/j.dt.2020.03.012

    Article  Google Scholar 

  14. Vinyas, M., Harursampath, D., Nguyen Thoi, T.: A higher order coupled frequency characteristics study of smart magneto-electro-elastic composite plates with cut-outs using finite element methods. Defence Technol. (2020). https://doi.org/10.1016/j.dt.2020.02.009

    Article  Google Scholar 

  15. Ren, S., Vinyas, M., Meng, G., Zhou, L.: Static responses of magneto-electro-elastic structures in moisture field using stabilized node-based smoothed radial point interpolation method. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.112696

    Article  Google Scholar 

  16. Vinyas, M., Harursampath, D.: Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.112749

    Article  Google Scholar 

  17. Arjun, S.M., Vinyas, M., Vishwas, M., Sathiskumar, A.P., Dineshkumar, H.: Investigation on the interphase effects on the energy harvesting characteristics of three phase magneto-electro-elastic cantilever beam. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2062630

    Article  Google Scholar 

  18. Vinyas, M.: A numerical investigation on the nonlinear pyrocoupled dynamic response of blast loaded magnetoelectroelastic multiphase porous plates in thermal environment. Eur. Phys. J. Plus 137, 626 (2022). https://doi.org/10.1140/epjp/s13360-022-02795-4

    Article  Google Scholar 

  19. Vinyas, M., Dineshkumar, H.: Large deflection analysis of functionally graded magneto-electro-elastic porous flat panels. Eng. Comput. 38, 1615–1634 (2022). https://doi.org/10.1007/s00366-020-01270-x

    Article  Google Scholar 

  20. Vinyas, M., Vishwas, M., Sriram, M., Dineshkumar, H.: Influence of micro-topological textures of BaTiO3–CoFe2O4 composites on the nonlinear pyrocoupled dynamic response of blast loaded magneto-electro-elastic plates in thermal environment. Eur. Phys. J. Plus 137, 675 (2022). https://doi.org/10.1140/epjp/s13360-022-02829-x

    Article  Google Scholar 

  21. Vinyas, M.: Nonlinear damping of auxetic sandwich plates with functionally graded magneto-electro-elastic facings under multiphysics loads and electromagnetic circuits. Compos. Struct. 290, 115523 (2022). https://doi.org/10.1016/j.compstruct.2022.115523

    Article  Google Scholar 

  22. Vinyas, M., Subhaschandra, K.: Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates. J. Intell. Mater. Syst. Struct. (2022). https://doi.org/10.1177/1045389X19843674

    Article  Google Scholar 

  23. Vinyas, M.: Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study. Mater. Res. Express 6, 12 (2022). https://doi.org/10.1088/2053-1591/ab6649

    Article  Google Scholar 

  24. Zhang, P., Qi, C., Fang, H., Sun, S.: A semi-analytical approach for the flexural analysis of in-plane functionally graded magneto-electro-elastic plates. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.112590

    Article  Google Scholar 

  25. Zhang, P., Qi, C., Fang, H., Ma, C., Huang, Y.: Semi-analytical analysis of static and dynamic responses for laminated magneto-electro-elastic plates. Compos. Struct. (2019). https://doi.org/10.1016/j.compstruct.2019.110933

    Article  Google Scholar 

  26. Liu, J., Zhang, P., Lin, G., Wang, W., Lu, S.: Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method. Eng. Anal. Bound. Elem. 68, 103–114 (2016). https://doi.org/10.1016/j.enganabound.2016.04.005

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J., Zhang, P., Lin, G., Wang, W., Lu, S.: High order solutions for the magneto-electro-elastic plate with non-uniform materials. Int. J. Mech. Sci. 115–116, 532–551 (2016). https://doi.org/10.1016/j.ijmecsci.2016.07.033

    Article  Google Scholar 

  28. Kiran, M.C., Kattimani, S.C.: Free vibration of multilayered magneto-electro-elastic plates with skewed edges using layer wise shear deformation theory. Mater. Today Proc. 5(10), 21248–21255 (2018). https://doi.org/10.1016/j.matpr.2018.06.525

    Article  Google Scholar 

  29. Kiran, M.C., Kattimani, S.C.: Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: a finite element study. Eur. J. Mech. A Solids 71, 258–277 (2018). https://doi.org/10.1016/j.euromechsol.2018.04.006

    Article  MathSciNet  MATH  Google Scholar 

  30. Singh, S.K., Singh, I.V.: Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material. Eng. Fract. Mech. 247, 107640 (2021)

    Article  Google Scholar 

  31. Zhang, G.Y., Qu, Y.L., Gao, X.L., Jin, F.: A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech. Mater. 149, 103412 (2020)

    Article  Google Scholar 

  32. Ye Tang, Z.S., Ma, Q., Ding, T.W.: Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: a nano-structure analysis. Compos. Struct. 264, 113746 (2021)

    Article  Google Scholar 

  33. Żur, K.K., Arefi, M., Kim, J., Reddy, J.N.: Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. Part B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.107601

    Article  Google Scholar 

  34. Arefi, M., Zenkour, A.M.: Thermo-electro-magneto-mechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates. Mech. Res. Commun. 84, 27–42 (2017). https://doi.org/10.1016/j.mechrescom.2017.06.002

    Article  Google Scholar 

  35. Dat, N.D., Quan, T.Q., Mahesh, V., Duc, N.D.: Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105906

    Article  Google Scholar 

  36. Xiao, D., Han, Q., Jiang, T.: Guided wave propagation in a multilayered magneto-electro-elastic curved panel by Chebyshev spectral elements method. Compos. Struct. 207, 701–710 (2019). https://doi.org/10.1016/j.compstruct.2018.09.031

    Article  Google Scholar 

  37. Vinyas, M., Sathiskumar, A.P.: Nonlinear damped transient response of sandwich auxetic plates with porous magneto-electro-elastic facesheets. Eur. Phys. J. Plus 137, 563 (2022). https://doi.org/10.1140/epjp/s13360-022-02756-x

    Article  Google Scholar 

  38. Vinyas, M.: Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto-electro-elastic facesheets. Thin Wall. Struct. 179, 109547 (2022). https://doi.org/10.1016/j.tws.2022.109547

    Article  Google Scholar 

  39. Vinyas, M., Dineshkumar, H.: Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Eng. Comput. 38, 1029–1051 (2022)

    Article  Google Scholar 

  40. Volmir, A.S.: Nonlinear dynamics of plates and shells. Science Edition, Moscow (1972)

    Google Scholar 

  41. Patel, B.P., Gupta, S.S., Loknath, M.S., Kadu, C.P.: Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory. Compos. Struct. 69, 259–270 (2005)

    Article  Google Scholar 

  42. Dym, C.L.: Some new results for the vibrations of circular cylinders. J. Sound Vib. 29, 189–205 (1973)

    Article  MATH  Google Scholar 

  43. Goncalves, B., Ramos, N.R.S.S.: Numerical method for vibration analysis of cylindrical shells. J. Eng. Mech. ASCE 123, 544–550 (1997)

    Article  Google Scholar 

  44. Shen, H.S., Xiang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput. Methods Appl. Mech. Eng. 213–216, 196–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Raju, K.K., Rao, G.V.: Large amplitude of asymmetric vibrations of some thin shells of revolution. J. Sound Vib. 44(3), 327–333 (1976)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research has been done under the research project QG.22.66 “Stability analysis and structure optimization of the sandwich smart nano-composite structure” of Vietnam Nation University, Hanoi. The authors are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Ngoc Thinh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 7,

Table 7 Mechanical properties of CNTRC material (core layer)

8

Table 8 Mechanical properties of magneto-electro-elastic material

and 9

Table 9 Names of quantities and corresponding symbols of the mechanical and physical components of the MEE material layer

.

Appendix 2

$$ \begin{aligned} \left\{ \begin{gathered} \varepsilon_{x} \hfill \\ \varepsilon_{y} \hfill \\ \gamma_{xy} \hfill \\ \end{gathered} \right\} & = \left\{ \begin{gathered} \frac{\partial u}{{\partial x}} + \frac{1}{2}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} \hfill \\ \frac{\partial v}{{\partial y}} - \frac{w}{R} + \frac{1}{2}\left( {\frac{\partial w}{{\partial y}}} \right)^{2} \hfill \\ \frac{\partial u}{{\partial y}} + \frac{\partial v}{{\partial x}} + \frac{\partial w}{{\partial x}}\frac{\partial w}{{\partial y}} \hfill \\ \end{gathered} \right\} - z\left\{ \begin{gathered} \frac{{\partial^{2} w}}{{\partial x^{2} }} \hfill \\ \frac{{\partial^{2} w}}{{\partial y^{2} }} \hfill \\ 2\frac{{\partial^{2} w}}{\partial x\partial y} \hfill \\ \end{gathered} \right\}; \\ \left\{ {\begin{array}{*{20}c} {\sigma_{x}^{{}} } \\ {\sigma_{y}^{{}} } \\ {\sigma_{xy}^{{}} } \\ \end{array} } \right\}_{a} & = \left[ {\begin{array}{*{20}c} {Q_{11}^{a} } & {Q_{12}^{a} } & 0 \\ {Q_{12}^{a} } & {Q_{22}^{a} } & 0 \\ 0 & 0 & {Q_{66}^{a} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\varepsilon_{x} - \alpha_{1} \Delta T} \\ {\varepsilon_{y} - \alpha_{2} \Delta T} \\ {\gamma_{xy} } \\ \end{array} } \right\}_{a} , \\ \end{aligned} $$
$$ \begin{aligned} \widetilde{{C_{11} }} & = C_{11} - \frac{{C_{13}^{2} }}{{C_{33} }}; \, \widetilde{{C_{12} }} = C_{12} - \frac{{C_{13} C_{23} }}{{C_{33} }}, \\ \, \widetilde{{C_{22} }} & = C_{22} - \frac{{C_{23}^{2} }}{{C_{33} }}; \, \widetilde{{C_{66} }} = C_{66} , \\ \widetilde{{e_{31} }} & = e_{31} - \frac{{C_{13} e_{33} }}{{C_{33} }}; \, \widetilde{{e_{32} }} = e_{32} - \frac{{C_{23} e_{33} }}{{C_{33} }}, \\ \, \widetilde{{q_{31} }} & = q_{31} - \frac{{C_{13} q_{33} }}{{C_{33} }}; \\ \end{aligned} $$
$$ \begin{aligned} \widetilde{{q_{32} }} & = q_{32} - \frac{{C_{23} q_{33} }}{{C_{33} }},\widetilde{{\mu_{11} }} = \mu_{11} ; \\ \, \widetilde{{\mu_{22} }} & = \mu_{22} ; \, \widetilde{{\mu_{33} }} = \mu_{33} + \frac{{q_{33}^{2} }}{{C_{33} }}; \\ \widetilde{{\alpha_{1} }} & = \alpha_{1} - \frac{{C_{13} \alpha_{3} }}{{C_{33} }}; \, \widetilde{{\alpha_{2} }} = \alpha_{2} - \frac{{C_{23} \alpha_{3} }}{{C_{33} }}, \\ \widetilde{{\eta_{11} }} & = \eta_{11} ; \, \widetilde{{\eta_{22} }} = \eta_{22} ; \, \widetilde{{\eta_{33} }} = \eta_{33} + \frac{{e_{33}^{2} }}{{C_{33} }}; \\ \widetilde{{m_{11} }} & = m_{11} ; \, \widetilde{{m_{22} }} = m_{22} ; \, \widetilde{{m_{33} }} = m_{33} + \frac{{e_{33} q_{33} }}{{C_{33} }}; \\ \end{aligned} $$
$$ \begin{aligned} N_{x} & = F_{11} \varepsilon_{x}^{0} + F_{12} \varepsilon_{y}^{0} + G_{11} k_{x}^{{}} \\ & \quad + G_{12} k_{y}^{{}} - F_{13} E_{z} - G_{13} H_{z} - \alpha_{1} \Delta T, \\ N_{y} & = F_{12} \varepsilon_{x}^{0} + F_{22} \varepsilon_{y}^{0} + G_{12} k_{x}^{{}} \\ & \quad + G_{22} k_{y}^{{}} - F_{14} E_{z} - G_{14} H_{z} - \alpha_{2} \Delta T, \\ N_{xy} & = F_{66} \gamma_{xy}^{0} + G_{66} k_{xy}^{{}} , \\ M_{x} & = G_{11} \varepsilon_{x}^{0} + G_{12} \varepsilon_{y}^{0} + H_{11} k_{x}^{{}} \\ & \quad + H_{12} k_{y}^{{}} - F_{23} E_{z} - G_{23} H_{z} - \alpha_{3} \Delta T, \\ M_{y} & = G_{12} \varepsilon_{x}^{0} + G_{22} \varepsilon_{y}^{0} + H_{12} k_{x}^{{}} \\ & \quad + H_{22} k_{y}^{{}} - F_{24} E_{z} - G_{24} H_{z} - \alpha_{4} \Delta T, \\ M_{xy} & = G_{66} \gamma_{xy}^{0} + H_{66} k_{xy}^{{}} , \\ \end{aligned} $$
$$ \begin{aligned} \left( {F_{ij} ,\,\,G_{ij} ,\,\,H_{ij} } \right) & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\widetilde{{C_{ij} }}(1,z,z^{2} ){\text{d}}z} + \int\limits_{{ - h_{c} /2}}^{{h_{c} /2}} {Q_{ij} (1,z,z^{2} ){\text{d}}z} \\ & \quad + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\widetilde{{C_{ij} }}(1,z,z^{2} ){\text{d}}z,} \quad \left( {ij = 11,12,22,66} \right), \\ \left( {F_{13} ,F_{23} } \right) & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\widetilde{{e_{31} }}\left( {1,z} \right){\text{d}}z} + \int\limits_{{h_{c} /2}}^{{h_{f} + h_{c} /2}} {\widetilde{{e_{31} }}\left( {1,z} \right){\text{d}}z} , \\ \left( {F_{14} ,F_{24} } \right) & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\widetilde{{e_{32} }}\left( {1,z} \right){\text{d}}z} + \int\limits_{{h_{c} /2}}^{{h_{f} + h_{c} /2}} {\widetilde{{e_{32} }}\left( {1,z,z^{3} } \right){\text{d}}z} , \\ \left( {G_{13} ,G_{23} } \right) & = \,\int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\widetilde{{q_{31} }}\left( {1,z} \right){\text{d}}z} + \int\limits_{{h_{c} /2}}^{{h_{f} + h_{c} /2}} {\widetilde{{q_{31} }}\left( {1,z} \right){\text{d}}z} , \\ \left( {G_{14} ,G_{24} } \right) & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\widetilde{{q_{32} }}\,\left( {1,z} \right){\text{d}}z} \quad + \int\limits_{{h_{c} /2}}^{{h_{f} + h_{c} /2}} {\widetilde{{q_{32} }}\left( {1,z} \right){\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} \alpha_{i} & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\widetilde{{\alpha_{1} }}\left( {1,z} \right){\text{d}}z} + \int\limits_{{ - h_{c} /2}}^{{h_{c} /2}} {Q_{11}^{c} \alpha_{11} \left( {1,z} \right){\text{d}}z} \\ & \quad + \int\limits_{{ - h_{c} /2}}^{{h_{c} /2}} {Q_{12}^{c} \alpha_{22} \left( {1,z} \right){\text{d}}z} + \int\limits_{{h_{c} /2}}^{{h_{f} + h_{c} /2}} {\widetilde{{\alpha_{1} }}\,\left( {1,z} \right)\,{\text{d}}z} , \\ \alpha_{j} & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\widetilde{{\alpha_{2} }}\,\left( {1,z} \right){\text{d}}z} + \int\limits_{{ - h_{c} /2}}^{{h_{c} /2}} {Q_{12}^{c} \alpha_{11} \left( {1,z} \right){\text{d}}z} \\ & \quad + \int\limits_{{ - h_{c} /2}}^{{h_{c} /2}} {Q_{22}^{c} \alpha_{22} \,\left( {1,z} \right){\text{d}}z} + \int\limits_{{h_{c} /2}}^{{h_{f} + h_{c} /2}} {\widetilde{{\alpha_{2} }}\left( {1,z} \right){\text{d}}z} , \\ & \quad \left( {i = 1,3;j = 2,4} \right) \\ \end{aligned} $$

Appendix 3

$$ \begin{aligned} \varepsilon_{x}^{0} & = F_{22}^{*} \frac{{\partial^{2} f}}{{\partial y^{2} }} - F_{12}^{*} \frac{{\partial^{2} f}}{{\partial x^{2} }} + G_{11}^{*} \frac{{\partial^{2} w}}{{\partial x^{2} }} \\ & \quad + G_{12}^{*} \frac{{\partial^{2} w}}{{\partial y^{2} }} + F_{13}^{*} \phi_{0} + G_{13}^{*} \psi_{0} + \alpha_{1}^{*} \Delta T, \\ \varepsilon_{y}^{0} & = F_{11}^{*} \frac{{\partial^{2} f}}{{\partial x^{2} }} - F_{12}^{*} \frac{{\partial^{2} f}}{{\partial y^{2} }} + G_{21}^{*} \frac{{\partial^{2} w}}{{\partial x^{2} }} \\ & \quad + G_{22}^{*} \frac{{\partial^{2} w}}{{\partial y^{2} }} + F_{14}^{*} \phi_{0} + G_{14}^{*} \psi_{0} + \alpha_{2}^{*} \Delta T, \\ \gamma_{xy}^{0} & = - F_{66}^{*} \frac{{\partial^{2} f}}{\partial x\partial y} + 2G_{66}^{*} \left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right), \\ \end{aligned} $$
$$ \begin{aligned} F_{11}^{*} & = \frac{{F_{11} }}{\Delta },\,F_{22}^{*} = \frac{{F_{22} }}{\Delta },\,F_{12}^{*} = \frac{{F_{12} }}{\Delta }, \\ \Delta & = F_{11} F_{22} - F_{12}^{2} ,F_{66}^{*} = \frac{1}{{F_{66} }},G_{66}^{*} = \frac{{G_{66} }}{{F_{66} }}, \\ G_{11}^{*} & = F_{22}^{*} G_{11}^{{}} - F_{12}^{*} G_{12}^{{}} ,\,G_{22}^{*} = F_{11}^{*} G_{22} - F_{12}^{*} G_{12}^{{}} , \\ G_{12}^{*} & = F_{22}^{*} G_{12}^{{}} - F_{12}^{*} G_{22}^{{}} ,G_{21}^{*} = F_{11}^{*} G_{12} - F_{12}^{*} G_{11}^{{}} ,\, \\ F_{13}^{*} & = \frac{ - 2}{{h_{f} }}\left( {F_{22}^{*} F_{13}^{{}} - F_{12}^{*} F_{14}^{{}} } \right),F_{14}^{*} = \frac{ - 2}{{h_{f} }}\left( {F_{11}^{*} F_{14}^{{}} - F_{12}^{*} F_{13}^{{}} ,} \right); \\ G_{13}^{*} & = \frac{ - 2}{{h_{f} }}\left( {F_{22}^{*} G_{13}^{{}} - F_{12}^{*} G_{14}^{{}} } \right), \\ G_{14}^{*} & = \frac{ - 2}{{h_{f} }}\left( {F_{11}^{*} G_{14}^{{}} - F_{12}^{*} G_{13}^{{}} } \right), \\ \alpha_{1}^{*} & = F_{22}^{*} \alpha_{1} - F_{12}^{*} \alpha_{2} ,\alpha_{2}^{*} = F_{11}^{*} \alpha_{2} - F_{12}^{*} \alpha_{1} . \\ \end{aligned} $$

Replacing this stress function into Eqs. (8) and (10),

$$ \left\{ \begin{aligned} & G_{21}^{*} \frac{{\partial^{4} f}}{{\partial x^{4} }} + G_{12}^{*} \frac{{\partial^{4} f}}{{\partial y^{4} }} + \left( {G_{11}^{*} + G_{22}^{*} - 2G_{66}^{*} } \right)\frac{{\partial^{4} f}}{{\partial x^{2} \partial y^{2} }} \\ & \quad - L_{11}^{*} \frac{{\partial^{4} w}}{{\partial x^{4} }} - L_{22}^{*} \frac{{\partial^{4} w}}{{\partial y^{4} }} + \frac{1}{R}\frac{{\partial^{2} f}}{{\partial x^{2} }} \\ & \quad + \frac{{\partial^{2} f}}{{\partial y^{2} }}\left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial^{2} w^{*} }}{{\partial x^{2} }}} \right) - \left( {L_{12}^{*} + L_{21}^{*} + 4L_{66}^{*} } \right)\frac{{\partial^{4} w}}{{\partial x^{2} \partial y^{2} }} \\ & \quad - L_{31}^{*} \frac{{\partial^{2} \Phi }}{{\partial x^{2} }} - L_{32}^{*} \frac{{\partial^{2} \Phi }}{{\partial y^{2} }}\, - L_{41}^{*} \frac{{\partial^{2} \Psi }}{{\partial x^{2} }} \\ & \quad - L_{42}^{*} \frac{{\partial^{2} \Psi }}{{\partial y^{2} }} - 2\frac{{\partial^{2} f}}{\partial x\partial y}\left( {\frac{{\partial^{2} w}}{\partial x\partial y} + \frac{{\partial^{2} w^{*} }}{\partial x\partial y}} \right) \\ & \quad + \frac{{\partial^{2} f}}{{\partial x^{2} }}\left( {\frac{{\partial^{2} w}}{{\partial y^{2} }} + \frac{{\partial^{2} w^{*} }}{{\partial y^{2} }}} \right) \\ & \quad + p - k_{1} w + k_{2} \nabla^{2} w = \rho_{1} \frac{{\partial^{2} w}}{{\partial t^{2} }}, \\ & T_{11} \frac{{\partial^{2} w}}{{\partial x^{2} }} + T_{12} \frac{{\partial^{2} w}}{{\partial y^{2} }} + T_{13} \frac{{\partial^{2} \Phi }}{{\partial x^{2} }} + T_{14} \frac{{\partial^{2} \Phi }}{{\partial y^{2} }} \\ & \quad + T_{15} \frac{{\partial^{2} \Psi }}{{\partial x^{2} }} + T_{16} \frac{{\partial^{2} \Psi }}{{\partial y^{2} }} + \eta_{33}^{*} \Phi + m_{33}^{*} \Psi = 0, \\ & T_{21} \frac{{\partial^{2} w}}{{\partial x^{2} }} + T_{22} \frac{{\partial^{2} w}}{{\partial y^{2} }} + T_{15} \frac{{\partial^{2} \Phi }}{{\partial x^{2} }} + T_{16} \frac{{\partial^{2} \Phi }}{{\partial y^{2} }} \\ & \quad + T_{23} \frac{{\partial^{2} \Psi }}{{\partial x^{2} }} + T_{24} \frac{{\partial^{2} \Psi }}{{\partial y^{2} }} + m_{33}^{*} \Phi + \mu_{33}^{*} \Psi = 0, \\ \end{aligned} \right. $$

where the \(L_{ij}^{*} \left( {\,i = 1 - 4,j = 1 - 2} \right),L_{66}^{*} ,T_{kl} \left( {k = 1 - 2,l = 1 - 4} \right)T_{15} ,T_{16} ,A_{33}^{*} \left( {A = \eta ,m,\mu } \right)\):

$$ \begin{aligned} L_{11}^{*} & = H_{11} - G_{11}^{*} G_{11} - G_{21}^{*} G_{12} , \\ L_{22}^{*} & = H_{22} - G_{12}^{*} G_{12} - G_{22}^{*} G_{22} , \\ L_{12}^{*} & = H_{12} - G_{12}^{*} G_{11} - G_{22}^{*} G_{12} , \\ L_{21}^{*} & = H_{12} - G_{11}^{*} G_{12} - G_{21}^{*} G_{22} , \\ L_{66}^{*} & = H_{66} - G_{66}^{*} G_{66} ,\,\,L_{31}^{*} = \left( { - F_{23} } \right)\beta \sin \left( {\beta z} \right), \\ L_{32}^{*} & = \left( { - F_{24} } \right)\beta \sin \left( {\beta z} \right),\,\,L_{41}^{*} = \left( { - G_{23} } \right)\beta \sin \left( {\beta z} \right), \\ L_{42}^{*} & = \left( { - G_{24} } \right)\beta \sin \left( {\beta z} \right), \\ \end{aligned} $$
$$ \begin{aligned} \eta_{33}^{*} & = - \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\eta_{33} \left( {\beta {\text{sin}}\left( {\beta z} \right)} \right)^{2} {\text{d}}z} \\ & \quad - \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\eta_{33} \left( {\beta {\text{sin}}\left( {\beta z} \right)} \right)^{2} {\text{d}}z} , \\ m_{33}^{*} & = - \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {m_{33} \left( {\beta {\text{sin}}\left( {\beta z} \right)} \right)^{2} {\text{d}}z} \\ & \quad - \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {m_{33} \left( {\beta {\text{sin}}\left( {\beta z} \right)} \right)^{2} {\text{d}}z} , \\ \mu_{33}^{*} & = - \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\mu_{33} \left( {\beta {\text{sin}}\left( {\beta z} \right)} \right)^{2} {\text{d}}z} \\ & \quad - \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\mu_{33} \left( {\beta {\text{sin}}\left( {\beta z} \right)} \right)^{2} {\text{d}}z} , \\ \end{aligned} $$
$$ \begin{aligned} T_{11} & = - \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {e_{31} z\beta \sin \left( {\beta z} \right)} {\text{d}}z \\ & \quad - \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {e_{31} z\beta \sin \left( {\beta z} \right)} {\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} T_{12} & = - \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {e_{32} z\beta \sin \left( {\beta z} \right)} {\text{d}}z \\ & \quad - \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {e_{32} z\beta \sin \left( {\beta z} \right)} {\text{d}}z, \\ T_{13} & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\eta_{11} \cos^{2} \left( {\beta z} \right){\text{d}}z} \\ & \quad + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\eta_{11} \cos^{2} \left( {\beta z} \right){\text{d}}z} , \\ T_{14} & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\eta_{22} \cos^{2} \left( {\beta z} \right){\text{d}}z} \\ & \quad + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\eta_{22} \cos^{2} \left( {\beta z} \right){\text{d}}z} , \\ T_{15} & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {m_{11} \cos^{2} \left( {\beta z} \right){\text{d}}z} \\ & \quad + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {m_{11} \cos^{2} \left( {\beta z} \right){\text{d}}z} , \\ T_{16} & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {m_{22} \cos^{2} \left( {\beta z} \right){\text{d}}z} \\ & \quad + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {m_{22} \cos^{2} \left( {\beta z} \right){\text{d}}z} , \\ T_{21} & = - \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {q_{31} z\beta \sin \left( {\beta z} \right)} {\text{d}}z \\ & \quad - \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {q_{31} z\beta \sin \left( {\beta z} \right)} {\text{d}}z, \\ T_{22} & = - \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {q_{32} z\beta \sin \left( {\beta z} \right)} {\text{d}}z \\ & \quad - \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {q_{32} z\beta \sin \left( {\beta z} \right)} {\text{d}}z, \\ T_{23} & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\mu_{11} \cos^{2} \left( {\beta z} \right){\text{d}}z} \\ & \quad + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\mu_{11} \cos^{2} \left( {\beta z} \right){\text{d}}z} \\ T_{24} & = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\mu_{22} \cos^{2} \left( {\beta z} \right){\text{d}}z} \\ & \quad + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\mu_{22} \cos^{2} \left( {\beta z} \right){\text{d}}z} , \\ \end{aligned} $$

By substitution of approximate solutions into the deformation compatibility equation:

$$ \begin{aligned} F_{{11}}^{*} \frac{{\partial ^{4} f}}{{\partial x^{4} }} & + F_{{22}}^{*} \frac{{\partial ^{4} f}}{{\partial y^{4} }} + \left( {F_{{66}}^{*} - 2F_{{12}}^{*} } \right)\frac{{\partial ^{4} f}}{{\partial x^{2} \partial y^{2} }} \\ & \quad + G_{{21}}^{*} \frac{{\partial ^{4} w}}{{\partial x^{4} }} + G_{{12}}^{*} \frac{{\partial ^{4} w}}{{\partial y^{4} }} + \left( {G_{{11}}^{*} + G_{{22}}^{*} - 2G_{{66}}^{*} } \right)\frac{{\partial ^{4} w}}{{\partial x^{2} \partial y^{2} }} \\ & \quad - \left( {\left( {\frac{{\partial ^{2} w}}{{\partial x\partial y}}} \right)^{2} - \frac{{\partial ^{2} w}}{{\partial x^{2} }}\frac{{\partial ^{2} w}}{{\partial y^{2} }} + 2\frac{{\partial ^{2} w}}{{\partial x\partial y}}\frac{{\partial ^{2} w^{*} }}{{\partial x\partial y}}} \right. \\ &\quad - \left. {\frac{{\partial ^{2} w}}{{\partial x^{2} }}\frac{{\partial ^{2} w^{*} }}{{\partial y^{2} }} - \frac{{\partial ^{2} w}}{{\partial y^{2} }}\frac{{\partial ^{2} w^{*} }}{{\partial x^{2} }} - \frac{1}{R}\frac{{\partial ^{2} w}}{{\partial x^{2} }}} \right) = 0; \end{aligned} $$
$$ \begin{aligned} A_{1} & = M_{1} W\left( {W + 2\mu h} \right),\,\,A_{2} = M_{2} W\left( {W + 2\mu h} \right), \\ A_{3} & = M_{3} W, \\ \end{aligned} $$
$$ \begin{aligned} M_{1} & = \frac{{\delta_{n}^{2} }}{{32F_{11}^{*} \lambda_{m}^{2} }},M_{2} = \frac{{\lambda_{m}^{2} }}{{32F_{22}^{*} \delta_{n}^{2} }}, \\ M_{3} & = - \frac{{R\left[ {G_{21}^{*} \lambda_{m}^{4} + \left( {G_{11}^{*} + G_{22}^{*} - 2G_{66}^{*} } \right)\lambda_{m}^{2} \delta_{n}^{2} + G_{12}^{*} \delta_{n}^{4} } \right] - \lambda_{m}^{2} }}{{R\left[ {F_{11}^{*} \lambda_{m}^{4} - \left( {2F_{12}^{*} - F_{66}^{*} } \right)\lambda_{m}^{2} \delta_{n}^{2} + F_{22}^{*} \delta_{n}^{4} } \right]}}. \\ \end{aligned} $$
$$ \begin{aligned} h_{11} & = - \left[ \begin{gathered} L_{11}^{*} \lambda_{m}^{4} + L_{22}^{*} \delta_{n}^{4} + \left( {L_{12}^{*} + L_{21}^{*} + 4L_{66}^{*} } \right)\lambda_{m}^{2} \delta_{n}^{2} \hfill \\ + k_{1} + k_{2} \left( {\lambda_{m}^{2} + \delta_{n}^{2} } \right) \hfill \\ \end{gathered} \right] \\ & \quad + \left[ \begin{gathered} G_{21}^{*} \lambda_{m}^{4} + G_{12}^{*} \delta_{n}^{4} + \hfill \\ \left( {G_{11}^{*} + G_{22}^{*} - 2G_{66}^{*} } \right)\lambda_{m}^{2} \delta_{n}^{2} - \frac{{\lambda_{m}^{2} }}{R} \hfill \\ \end{gathered} \right]M_{3} , \\ \end{aligned} $$
$$ \begin{aligned} h_{12} & = - \frac{{32\lambda_{m}^{{}} \delta_{n}^{{}} }}{3\pi LR}M_{3} ,\,h_{13} = - \frac{{8\lambda_{m}^{{}} \delta_{n}^{{}} }}{3\pi LR}\left( {\frac{{G_{21}^{*} }}{{F_{11}^{*} }} + \frac{{G_{12}^{*} }}{{F_{22}^{*} }}} \right), \\ h_{14} & = - \frac{1}{16}\left( {\frac{{\lambda_{m}^{4} }}{{F_{22}^{*} }} + \frac{{\delta_{n}^{4} }}{{F_{11}^{*} }}} \right), \\ h_{15} & = L_{31}^{*} \lambda_{m}^{2} + L_{32}^{*} \delta_{n}^{2} ,\,h_{16} = L_{41}^{*} \lambda_{m}^{2} + L_{42}^{*} \delta_{n}^{2} , \\ h_{41} & = - \left( {T_{11} \lambda_{m}^{2} + T_{12} \delta_{n}^{2} } \right),h_{42} = - \left( {T_{13} \lambda_{m}^{2} + T_{14} \delta_{n}^{2} - n_{33}^{*} } \right), \\ h_{43} & = - \left( {T_{15} \lambda_{m}^{2} + T_{16} \delta_{n}^{2} - m_{33}^{*} } \right),h_{51} = - \left( {T_{21} \lambda_{m}^{2} + T_{22} \delta_{n}^{2} } \right), \\ h_{52} & = - \left( {T_{23} \lambda_{m}^{2} + T_{24} \delta_{n}^{2} - \mu_{33}^{*} } \right). \\ \end{aligned} $$

Appendix 4

$$ \int\limits_{0}^{2\pi R} {\int\limits_{0}^{L} {\frac{\partial u}{{\partial x}}{\text{d}}x{\text{d}}y = 0} } , $$
$$ \begin{aligned} \frac{\partial u}{{\partial x}} & = F_{22}^{*} \frac{{\partial^{2} f}}{{\partial y^{2} }} - F_{12}^{*} \frac{{\partial^{2} f}}{{\partial x^{2} }} + G_{11}^{*} \frac{{\partial^{2} w}}{{\partial x^{2} }} \\ & \quad + G_{12}^{*} \frac{{\partial^{2} w}}{{\partial y^{2} }} + F_{13}^{*} \phi_{0} + G_{13}^{*} \psi_{0} \\ & \quad + \alpha_{1}^{*} \Delta T - \frac{1}{2}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} - \frac{\partial w}{{\partial x}}\frac{{\partial w^{*} }}{\partial x}. \\ \end{aligned} $$
$$ \begin{aligned} N_{x0} & = g_{2} \left( {W + 2\mu h} \right)W + g_{3} \phi_{0} + g_{4} \psi_{0} + g_{5} \Delta T, \\ g_{2} & = \frac{{\lambda_{m}^{2} }}{{8F_{22}^{*} }},g_{3} = - \frac{{F_{13}^{*} }}{{F_{22}^{*} }},g_{4} = - \frac{{G_{13}^{*} }}{{F_{22}^{*} }}, \\ \end{aligned} $$
$$ \begin{aligned} g_{5} & = - \frac{{\alpha_{1}^{*} }}{{F_{22}^{*} }},\,a_{1} = - \frac{{h_{41} h_{52} - h_{43} h_{51} }}{{h_{42} h_{52} - h_{43}^{2} }}, \\ a_{2} & = \frac{{h_{41} h_{43} - h_{42} h_{51} }}{{h_{42} h_{52} - h_{43}^{2} }},o_{21} = \left( {o_{11} + o_{15}^{{}} a_{1} + o_{16}^{{}} a_{2} } \right), \\ \end{aligned} $$
$$ \begin{aligned} o_{11}^{*} & = \frac{1}{{\rho_{1} }}\left( {\left( {g_{3} \lambda_{m}^{2} } \right)\phi_{0} + \left( {g_{4} \lambda_{m}^{2} } \right)\psi_{0} + \left( {g_{5} \lambda_{m}^{2} } \right)\Delta T} \right), \\ o_{11} & = - h_{11} /\rho_{1} ,o_{12} = - h_{12} /\rho_{1} , \\ o_{13} & = - h_{13} /\rho_{1} ,o_{14} = \left( { - h_{14} + g_{2} \lambda_{m}^{2} } \right)/\rho_{1} , \\ o_{15} & = - h_{15} /\rho_{1} ,o_{16} = - h_{16} /\rho_{1} . \\ \end{aligned} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duc, N.D., Dat, N.D., Anh, V.T.T. et al. Effects of the magneto-electro-elastic layer on the CNTRC cylindrical shell. Arch Appl Mech 93, 997–1021 (2023). https://doi.org/10.1007/s00419-022-02310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02310-2

Keywords

Navigation