Skip to main content
Log in

Understanding the first-order inhomogeneous linear elasticity through local gauge transformations

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

It is well known that classical linear elasticity equations are not form-invariant under local transformations. This is intrinsically related to the inhomogeneity of elastic media. However, the reported new linear elasticity equations for inhomogeneous media may appear in different forms. This paper tries to clarify this issue by investigating the form-invariance of the Lagrangian under local temporal or spatial gauge transformations. In this way, these new equations in different forms can be easily understood as the results from different choices of gauge fixing schemes. It recommends to choose appropriate gauges with clear physical meanings to simplify calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

A :

Hamiltonian action

B 0 :

Undeformed configuration

B 1 :

Deformed configuration

B v :

Virtual configuration

C :

Elasticity tensor

\({\overline{C}}\) :

Elasticity tensor of comparison media

\({{C}}^{{{\text{eff}}}}\) :

Elasticity operator in the classical Willis equation

e :

Linear strain, \({{e}} = \left( {{{u}}\nabla + \nabla {{u}}} \right)/2\)

\(e_{kl}^{0}\) :

Pre-strain, \(e_{kl}^{0} = \left( {u_{k,l}^{0} + u_{l,k}^{0} } \right)/2\)

\({\overline{{e}}}\) :

Linear strain of comparison media, \({\overline{{e}}} = \left( {{\overline{{u}}}\nabla + \nabla {\overline{{u}}}} \right)/2\)

e 1, e 2, e 3 :

Basis vectors of the global Cartesian coordinate system

f :

Incremental body force from B0 to B1

\(f_{i}^{0}\) :

External body force in B0

\(\overline{f}_{i}\) :

Effective body force

\(\overline{f}_{i}^{0}\) :

Effective body force in B0

\(\overline{f}_{i}^{1}\) :

Effective body force in B1

\({{g}}_{i}\), \({{g^{\prime}}}_{i}\) :

Basis vectors in the material manifold

\({\overline{\small{{G}}}}\) :

Dynamic Green’s function

i, j, k, l, r, s :

Indices of spatial coordinates

K 0 :

Displacement coupling force tensor related to pre-stresses

L :

Incremental Lagrangian from B0 to B1

L 0 :

Incremental Lagrangian for homogeneous media

L 1 :

Incremental Lagrangian for inhomogeneous media

M, M x, M t :

Integral operators related to \({\overline{\small{{G}}}}\)

\(p_{i}\) :

Incremental momentum from B0 to B1

\(\overline{p}_{i}\) :

Effective momentum

\(P_{\alpha }\) :

Nöether current

\(q_{\beta }\) :

Arbitrary vector

\(\overline{s}_{ij}\) :

Total effective second Piola–Kirchhoff stress

S 0 :

Displacement coupling stress tensor related to pre-stresses

S, S x, S t :

Integral operators related to \({\overline{\small{{G}}}}\)

\({\mathbf{S}}^{{{\text{eff}}}}\), \({\hat{\mathbf{S}}}^{{{\text{eff}}}}\) :

Velocity coupling operator in the classical Willis equation

t :

Time

T :

Homogenized incremental kinetic energy density

T′ :

True incremental kinetic energy density

u :

Displacement of the material point X

u′ :

Displacement of the material point X′

\({\overline{{u}}}\) :

Displacement of comparison media

\(u_{i}^{0}\) :

Initial relative displacement between adjacent material points in B0

\(u_{i,j}^{0}\) :

Initial displacement gradient

\(u_{i,t}^{0}\) :

Initial relative velocity between adjacent material points

W :

Incremental density of strain energy

W 0 :

Initial density of strain energy

\(\overline{W}\) :

Effective incremental density of strain energy

x :

Temporal or spatial coordinate in B0

x′ :

Coordinate transformed from x

\({{x}}^{0}\), \({{x^{\prime}}}^{0}\) :

Spatial coordinates of material points X and X′ in B0

\({{x}}^{1}\), \({{x^{\prime}}}^{1}\) :

Spatial coordinates of material points X and X′ in B1

X, X′ :

Two adjacent material points in B0

α, β, γ :

Indices of temporal-spatial coordinates

\({ {\Gamma\,}}_{i\alpha }^{j}\) :

Connection or gauge potential

\(\delta_{\alpha \beta }\) :

Kronecker delta symbol

\(\Delta_{i}\) :

Arbitrary initial relative displacement

\(\Delta_{kl}\) :

Arbitrary initial displacement gradient

\(\varepsilon_{\alpha \beta \gamma }\) :

Levi–Civita symbol

π :

Momentum polarization

ρ :

Mass density of inhomogeneous media

ρ :

Homogenized mass density tensor

\(\overline{\rho }\) :

Mass density of comparison media

\({{{\rho}}}^{{{\text{eff}}}}\) :

Density operator in the classical Willis equation

σ :

Incremental Cauchy stress

σ 0 :

Pre-stress

\(\overline{\sigma }_{ij}\) :

Total Cauchy stress

τ :

Stress polarization

\(\varphi_{\alpha \beta }\) :

Coordinate transformation operator

Φ :

Incremental potential of external body forces

\(\psi_{ij}\) :

Gauge transformation operator

Ω :

Temporal-spatial domain

Ω′ :

Temporal-spatial domain transformed from Ω

References

  1. Timoshenko, S.P., Goodier, J.N.: Theory of elasticity, 3rd edn. McGraw-Hill (1970)

    MATH  Google Scholar 

  2. Willis, J.R.: Dynamics of composites continuum micromechanics CISM courses and lectures. Springer (1997)

    Google Scholar 

  3. Futhazar, G., Le Marrec, L., Rakotomanana, L.R.: Covariant gradient continua applied to wave propagation within defective material. Arch. Appl. Mech. 84, 1339–1356 (2014)

    Article  MATH  Google Scholar 

  4. Willis, J.R.: Variational principles for dynamics problems in inhomogeneous elastic media. Wave Motion 3, 1–11 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Willis, J.R.: From statics of composites to acoustic metamaterials. Philos. Trans. R. Soc. Lond. A 377, 20190099 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Willis, J.R.: Some personal reflections on acoustic metamaterials. Wave Motion 108, 102834 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Schurig, D., et al.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  MathSciNet  Google Scholar 

  8. Pendry, J.B.: Negative refraction. Contemp. Phys. 45, 191–202 (2004)

    Article  Google Scholar 

  9. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leonhardt, U.: Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolin, L.S.: Izvestiya vysshikh uchebnykh zavedenii. Radiofizika 4, 964–967 (1961). The English translation is available at https://www.math.utah.edu/~milton/DolinTrans2.pdf

  12. McCall, M., et al.: Roadmap on transformation optics. J. Opt. 20, 063001 (2018)

    Article  Google Scholar 

  13. Chen, H., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D: Appl. Phys. 43, 113001 (2010)

    Article  Google Scholar 

  14. Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)

    Article  Google Scholar 

  15. Norris, A.N., Shuvalov, A.L.: Elastic cloaking theory. Wave Motion 48, 525–538 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Srivastava, A., Nemat-Nasser, S.: Overall dynamic properties of three-dimensional periodic elastic composites. Proc. R. Soc. A 468, 269–287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Norris, A.N., Shuvalov, A.L., Kutsenko, A.A.: Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc. R. Soc. A 468, 1629–1651 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nassar, H., He, Q.C., Auffray, N.: Willis elastodynamic homogenization theory revisited for periodic media. J. Mech. Phys. Solids 77, 158–178 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muhlestein, M.B., et al.: Reciprocity, passivity and causality in Willis materials. Proc. R. Soc. A 472, 20160604 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Michael, B., et al.: Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017)

    Article  Google Scholar 

  21. Liu, Y.Q., et al.: Willis metamaterial on a structured beam. Phys. Rev. X 9, 1–12 (2019)

    Google Scholar 

  22. Quan, L., et al.: Maximum Willis coupling in acoustic scatterers. Phys. Rev. Lett. 120, 254301 (2018)

    Article  Google Scholar 

  23. Lau, J., et al.: Coupled decorated membrane resonators with large Willis coupling. Phys. Rev. Appl. 12, 014032 (2019)

    Article  Google Scholar 

  24. Nassar, H., et al.: Modulated phononic crystals non-reciprocal wave propagation and Willis materials. J. Mech. Phys. Solids 101, 10–29 (2017)

    Article  MathSciNet  Google Scholar 

  25. Xiang, Z.H.: The form-invariance of wave equations without requiring a priori relations between field variables. Sci. China Phys. Mech. 57, 2285–2296 (2014)

    Article  Google Scholar 

  26. Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials. Elsevier (1993)

    MATH  Google Scholar 

  27. Willis, J.R.: The nonlocal influence of density variations in a composite. Int. J. Solids Struct. 7, 805–817 (1985)

    Article  MATH  Google Scholar 

  28. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463, 2881–2903 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maraner, P.: On the Jacobi metric for a general Lagrangian system. J. Math. Phys. 60, 112901 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiang, Z.H., Yao, R.W.: Realizing the Willis equations with pre-stresses. J. Mech. Phys. Solids 87, 1–6 (2016)

    Article  MathSciNet  Google Scholar 

  31. Yao, R.W., Xiang, Z.H.: One dimensional Willis-form equations can retain time synchronization under spatial transformations. Int. J. Solids Struct. 141–142, 73–77 (2018)

    Article  Google Scholar 

  32. Yao, R.W., et al.: An experimental verification of the one-dimensional static Willis-form equations. Int. J. Solids Struct. 134, 283–292 (2018)

    Article  Google Scholar 

  33. Hu, Z.H., et al.: Identify the distribution of 2D residual stresses around notches based on the Willis-form equations. Inverse Probl. Sci. En. 29, 736–758 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, Y.X., Xiang, Z.H.: Buckling analyses of spherical shells by the finite element method based on the Willis-form equations. Int. J. Appl. Mech. 11, 1950091 (2019)

    Article  Google Scholar 

  35. Sun, Y.X., Xiang, Z.H.: A natural perturbation method with symmetric secant stiffness for stability analyses of quasi-perfect thin-walled structures. Thin Wall. Struct. 164, 107870 (2021)

    Article  Google Scholar 

  36. Willis, J.R.: Effective constitutive relations for waves in composites and metamaterials. Proc. R. Soc. A 467(2131), 1865–1879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Willis, J.R.: A comparison of two formulations for effective relations for waves in a composite. Mech. Mater. 47, 51–60 (2012)

    Article  Google Scholar 

  38. Kline, M.: Mathematical thought from ancient to modern times. Oxford University Press (1972)

    MATH  Google Scholar 

  39. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. Springer (2004)

    Book  MATH  Google Scholar 

  40. Frewer, M.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)

    Article  MATH  Google Scholar 

  41. Cao, T.Y.: Conceptual developments of 20th century field theories, 2nd edn. Cambridge University Press (2019)

    Book  MATH  Google Scholar 

  42. Konopleva, N.P., Popov, V.N.: Gauge fields. Harwood Academic Publishers (1981)

    MATH  Google Scholar 

  43. Moriyasu, K.: An elementary primer for gauge theory. World Scientific Publishing Co Pte Ltd (1983)

    Book  Google Scholar 

  44. O’Raifeartaigh, L., Straumann, N.: Gauge theory: historical origins and some modern developments. Rev. Mod. Phys. 72, 1–23 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jackson, J.D., Okun, L.B.: Historical roots of gauge invariance. Rev. Mod. Phys. 73, 663–680 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Brading, K.A.: Which symmetry? Noether, Weyl, and conservation of electric charge. Stud. Hist. Philos. Modern Phys. 33, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kondo, K.: Non-Riemanian geometry of imperfect crystals from macroscopic viewpoint. In: Memoirs of the Unifying Study of Basic Problems in Engineering Sciences by Means of Geometry, Vol. I, ed. K. Kondo, Division D, Gakujutsu Benken Fukyu-Kai, Tokyo, (1955)

  49. Bilby, B.A., Smith, E.: Continuous distributions of dislocations: a new application of the method of non Riemanian geometry. Proc. R. Soc. A 231, 263–273 (1955)

    Google Scholar 

  50. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer-Verlag (1958)

    Book  MATH  Google Scholar 

  51. Maugin, G.A.: Continuum mechanics through the ages – from the renaissance to the twentieth century. Springer (2016)

    Book  MATH  Google Scholar 

  52. Edelen, D.G.B., Lagoudas, D.C.: Gauge theory and defects in solids. Elsevier (1988)

    MATH  Google Scholar 

  53. Rakotomanana, L.R.: A geometric approach to thermomechanics of dissipating continua. Springer (2004)

    Book  MATH  Google Scholar 

  54. Yavari, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Rational Mech. Anal. 205, 59–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Romano, G., Barretta, R., Diaco, M.: Geometric continuum mechanics. Meccanica 49, 111–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zou, W.N.: Recasting theory of elasticity with micro-finite elements. Acta Mech. Sin. 31, 679–684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lagoudas, D.C., Edelen, D.G.B.: Material and spatial gauge theories of solids — I. gauge constructs, geometry, and kinematics. Int. J. Eng. Sci. 27, 411–431 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pathrikar, A., Rahaman, M.M., Roy, D.: A gauge theory for brittle damage in solids and a peridynamics implementation. Comput. Methods Appl. Mech. Engrg. 385, 114036 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  59. Olver, P.J.: Equivalence, invariants, and symmetry. Cambridge University Press (1995)

    Book  MATH  Google Scholar 

  60. Schwarzbach, Y.K.: The noether theorems. Springer (2011)

    Book  MATH  Google Scholar 

  61. Maugin, G.A.: Material inhomogeneities in Elasticity. Chapman & Hall (1993)

    Book  MATH  Google Scholar 

  62. Kienzler, R., Herrmann, G.: Mechanics in Material space. Springer (2000)

    Book  MATH  Google Scholar 

  63. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. A 244, 87–112 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  64. Eshelby, J.D.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  65. Dineva, P.S., Manolis, G.D., Wuttke, F.: Fundamental solutions in 3D elastodynamics for the BEM: a review. Eng. Anal. Bound. Elem. 105, 47–69 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  66. Qu, H., Liu, X., Hu, G.: Topological valley states in sonic crystals with Willis coupling. Appl. Phys. Lett. 119, 051903 (2021)

    Article  Google Scholar 

  67. Yang, Y.B., Chiou, H.T.: Rigid body motion test for nonlinear analysis with beam elements. J. Eng. Mech. 113, 1404–1419 (1987)

    Google Scholar 

  68. Roya, P., Kumara, S., Roy, D.: Cauchy-Maxwell equations: a space–time conformal gauge theory for coupled electromagnetism and elasticity. Int. J. Non-Linear. Mech. 126, 103542 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks Dr. Jing Xiao for clarifying some basic concepts of the gauge theory in theoretical physics. The related work has been supported by the National Natural Science Foundation of China [Grant Number 11272168, 11672144].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihai Xiang.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The classical Willis equations

An inhomogeneous medium with elasticity tensor C and volume density ρ is regarded as the perturbed medium compared to a homogeneous medium with properties of \(\overline {\small{C}}\) and \(\overline{\rho }\):

$$ {C} = \overline {{C}} + \delta { C} {\mkern 5mu} \text {and} {\mkern 5mu} \rho = \bar{\rho } + \delta \rho ,$$
(40)

where \(\delta { {C}}\) and \(\delta \rho\) are corresponding perturbations. Thus, the incremental stress σ and momentum p of the inhomogeneous medium are written as:

$${{\varvec{\sigma}}} = { C}:{ e} = \left( {{\overline{ C}} + \delta { C}} \right):{ e} = {\overline{ C}}:{ e} + {{varvec \tau}},$$
(41)
$${ p} = \rho {\dot{ u}} = \left( {\overline{\rho } + \delta \rho } \right){\dot{ u}} = \overline{\rho }{\dot{ u}} + {{ \pi}},$$
(42)

where \({{\varvec \tau}} = \delta { C}:{ e}\) and \({{ \pi}} = \delta \rho {\dot{ u}}\) are polarization terms. It should be noted that we do not distinguish σ from the Cauchy stress and the second Piola–Kirchhoff stress in classical linear elasticity.

Substituting Eqs. 41 and 42 into Eq. 23, yields:

$$\nabla \cdot \left( {{ C}:{ e}} \right) + { {f} + \nabla \cdot {\varvec \tau} - {\dot{ \pi}}} = \overline{\rho } \ddot { {u}}.$$
(43)

Since \(\nabla \cdot {{\varvec{\tau}}} - {\dot{ \varvec{\pi }}}\) serves as an effective body force, the solution to Eq. 43 at temporal-spatial position x can be written as:

$${ u}\left( { x} \right) = {\overline{ u}}\left( { x} \right) + \int_{ \Omega^{\prime} } {{\overline{ G}}\left( {{ x},{ { x^{\prime}}}} \right)\left[ {\nabla \cdot {{\varvec \tau}}\left( {{ x^{\prime}}} \right) - {\dot{ {\varvec \pi }}}\left( {{ x^{\prime}}} \right)} \right]{\text{d}} \Omega^{\prime}} ,$$
(44)

where \({\overline{\small {G}}}\) is the dynamic Green’s function of the comparison medium, and \({\overline{ {u}}}\) is the corresponding displacement.

Applying the integration by parts on Eq. 44 gives:

$${ {u}} = {\overline{ {u}}} - { {S}} \circ {{\varvec \tau}} - { M} \circ {{\varvec \pi}}.$$
(45)

Then, the corresponding linear strain and velocity can be obtained as:

$${ e} = {\overline{ e}} - { S}_{{ {x}}} \circ {{varvec\tau}} - { M}_{{ {x}}} \circ {{\varvec \pi}}\,, \quad {\dot{ u}} = { {\dot{\overline{ u}}}} - { S}_{t} \circ {{\varvec\tau}} - { M}_{t} \circ {{\varvec\pi}}.$$
(46)

In above equations, S, Sx, St, M, Mx, and Mt are integral operators related to \({\overline{\small G}}\) and “◦” denotes the temporal-spatial convolution as that in Eq. 44.

With Eq. 44, we can obtain:

$$\begin{aligned}{{varvec \tau}} + \delta { C}:\left( {{ S}_{x} \circ {{\varvec \tau}} + {\ M}_{x} \circ {{\varvec \pi}}} \right) &= \delta {\ C}:{\overline{\ e}},\\ {{\varvec \pi}} + \delta \rho \left( {{\ S}_{t} \circ {{\varvec \tau}} + {\ M}_{t} \circ {{\varvec \pi}}} \right) &= \delta \rho { {\dot{\overline{\ u}}}}.\end{aligned}$$
(47)

After applying the ensemble averaging on Eq. 47 and eliminating \({\overline{\ e}}\) and \({ {\dot{\overline{\ u}}}}\), we finally obtain the homogenized elastodynamic equations (the classical Willis Equations):

$$\left\langle {{\varvec \sigma}} \right\rangle = {\ {C}}^{{{\text{eff}}}} * \left\langle {\ {e}} \right\rangle + { \ {S}}^{{{\text{eff}}}} \circ \left\langle {{\dot{\ {u}}}} \right\rangle ,$$
(48)
$$\nabla \cdot \left\langle {{\varvec \sigma}} \right\rangle + {\ {f}} = {\hat{\ {S}}}^{{{\text{eff}}}} \circ \left\langle {{\dot{ \ {e}}}} \right\rangle + {{\ \rho}}^{{{\text{eff}}}} \odot \left\langle {{ {\ddot{\ u}}}} \right\rangle ,$$
(49)

where

$${\ {C}}^{{{\text{eff}}}} \!*\! \left\langle {\ {e}} \right\rangle {\!=\! }\left(\! {\overline {\ C} \!+\! \left\langle {\delta {\ {C}}} \right\rangle }\! \right) \!:\! \left\langle {\ {e}} \right\rangle \!-\! \left\langle {\left( {\delta {\ {C}} \!-\! \left\langle {\delta {\ {C}}} \right\rangle } \right)\!:\!{\ {S}}_{{ {x}}} \!:\! \left( {\delta {\ {C}} \!-\! \left\langle {\delta {\ {C}}} \right\rangle } \right)} \right\rangle \!\circ\! \left\langle {\ {e}} \right\rangle ,$$
(50a)
$${\rho}^{\text{eff}} \cdot \left\langle { {\ddot{\ u}}} \right\rangle { = }\left( {\overline{\rho } + \left\langle {\delta \rho } \right\rangle } \right)\left\langle { {\ddot{u}}} \right\rangle - \left\langle {\left( {\delta \rho - \left\langle {\delta \rho } \right\rangle } \right){\ {M}}_{t} \left( {\delta \rho - \left\langle {\delta \rho } \right\rangle } \right)} \right\rangle \circ \left\langle { {\ddot{\ u}}} \right\rangle ,$$
(50b)
$${\ {S}}^{{{\text{eff}}}} { = } - \left\langle {\left( {\delta {\ {C}} - \left\langle {\delta {\ {C}}} \right\rangle } \right):{\ {M}}_{{ {x}}} \left( {\delta \rho - \left\langle {\delta \rho } \right\rangle } \right)} \right\rangle ,$$
(50c)
$${\hat{\ {S}}}^{{{\text{eff}}}} { = } - \left\langle {\left( {\delta \rho - \left\langle {\delta \rho } \right\rangle } \right){\ {S}}_{t} :\left( {\delta {\ {C}} - \left\langle {\delta {\ {C}}} \right\rangle } \right)} \right\rangle .$$
(50d)

It should be noted that \({\ {S}}^{{{\text{eff}}}}\) is a third-order tensor with the first two symmetric indices, i.e., \(S_{{\left( {ij} \right)k}}^{{{\text{eff}}}}\). \({\hat{\ {S}}}^{{{\text{eff}}}}\) is the adjoint of \({\ {S}}^{{{\text{eff}}}}\) with the last two symmetric indices, i.e., \(\hat{S}_{{i\left( {jk} \right)}}^{{{\text{eff}}}}\).

Appendix B: The Willis-form equations

As Fig. 1 shows, if the medium in the initial configuration B0 is inhomogeneous with pre-stresses σ0, the strain energy density in B0 and the deformed configuration B1 are explicit functions of the spatial position [26, 62], which are denoted as \(W\left( {x_{i}^{0} ,0} \right)\) and \(W\left( {x_{i}^{1} ,u_{i,j} } \right)\), respectively. In linear elasticity, \(W\left( {x_{i}^{1} ,u_{i,j} } \right)\) should be represented in B0 by using Taylor expansion as:

$$\begin{aligned}W\left( {x_{i}^{1} ,u_{i,j} } \right) &\approx W\left( {x_{i}^{0} ,0} \right) + \left. {\frac{\partial W}{{\partial u_{i,j} }}} \right|_{{x_{i} = x_{i}^{0} ,u_{i,j}\, = 0}} u_{i,j} + \left. {\frac{\partial W}{{\partial x_{i} }}} \right|_{{x_{i} = x_{i}^{0} ,u_{i,j}\, = 0}} u_{i} +\\ &\frac{1}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial u_{i,j} \partial u_{k,l} }}u_{i,j} u_{k,l} + 2\frac{{\partial^{2} W}}{{\partial u_{i,j} \partial x_{k} }}u_{i,j} u_{k} \!+\! \frac{{\partial^{2} W}}{{\partial x_{i} \partial x_{j} }}u_{i} u_{j} } \right)} \right|_{{x_{i} = x_{i}^{0} ,u_{i,j}\, = 0}} \\ &\!\equiv\! W\!\!\left({x_{i}^{0} \!,\!0\!} \right) \!+\! \sigma_{ij}^{0} u_{i,j} \!+\! W_{,i}^{0} u_{i} \!+\! \frac{1}{2}\!\left(\! {C_{ijkl} u_{i,j} u_{k,l} \!+\! 2\sigma_{ij,k}^{0} u_{i,j} u_{k} \!+\! W_{,ij}^{0} u_{i} u_{j} } \!\right)\!,\! \end{aligned}$$
(51)

where \(\sigma_{ij}^{0} = \left. {\frac{\partial W}{{\partial u_{i,j} }}} \right|_{{x_{i} = x_{i}^{0} ,u_{i,j}\, = 0}}\), \(W_{,i}^{0} \equiv \left. {\frac{\partial W}{{\partial x_{i} }}} \right|_{{x_{i} = x_{i}^{0} ,u_{i,j}\, = 0}}\) and \(C_{ijkl} \equiv \left. {\frac{{\partial^{2} W}}{{\partial u_{i,j} \,\,\partial u_{k,l} }}} \,\right|_{{x_{i} = x_{i}^{0} ,u_{i,j}\, = 0}}\).

To construct the Lagrangian defined in Eq. 6, we take the same T in Eq. 21, but W and Φ should consider inhomogeneity:

$$ \begin{aligned} W &= W\left( {x_{i}^{1} ,u_{i,j} } \right) - W\left( {x_{i}^{0} ,0} \right) \\ &= \sigma_{ij}^{0} u_{i,j} + W_{,i}^{0} u_{i} + \frac{1}{2}\left( {C_{ijkl} u_{i,j} u_{k,l} + 2\sigma_{ij,k}^{0} u_{i,j} u_{k} + W_{,ij}^{0} u_{i} u_{j} } \right), \\ \end{aligned} $$
(52)
$${ \Phi} = - \left( {f_{i}^{0} + \frac{1}{2}f_{i,j}^{0} u_{j} + f_{i} } \right)u_{i} ,$$
(53)

where \(f_{i}^{0}\) is the external body force in configuration B0. Since \(f_{i}^{0}\) could be inhomogeneous, its gradient is included in Eq.  53.

According to Eq. 8, the effective body force in B1 but represented in B0 can be obtained as:

$$\overline{f}_{i}^{1} = - \frac{\partial L}{{\partial u_{i} }} = f_{i}^{0} + f_{i,j}^{0} u_{j} + f_{i} - \sigma_{kl,i}^{0} u_{k,l} - W_{,i}^{0} - W_{,ij}^{0} u_{j} .$$
(54)

These terms in Eq.  54 have clear physical meanings. The first three terms are the contributions from the inhomogeneous external body force. The last three are due to the inhomogeneity of W, so that they are configurational forces according to Eshelby’s definition [63, 64].

The effective body force in B0 can be obtained by setting \(f_{i}\), \(u_{j}\) and \(u_{k,l}\) to zeros in Eq.  54:

$$\overline{f}_{i}^{0} = f_{i}^{0} - W_{,i}^{0} ,$$
(55)

which also accounts for the inhomogeneity of W0.

Also according to Eq. 8, the incremental stress represented at position x0 can be obtained as:

$$\sigma_{ij} = \overline{\sigma }_{ij} - \sigma_{ij}^{0} = \frac{\partial L}{{\partial u_{i,j} }} - \sigma_{ij}^{0} = C_{ijkl} u_{k,l} + \sigma_{ij,k}^{0} u_{k} .$$
(56)

Based on Eqs. 22, 55 and 56, the equation of motion for \(\sigma_{ij}\) can be obtained according to the Euler–Lagrange equation given in Eq. 7:

$$\sigma_{ij,j} + f_{i} = \sigma_{kl,i}^{0} u_{k,l} + \sigma_{ij,jk}^{0} u_{k} + \rho_{ij} u_{j,tt} ,$$
(57)

where \(- \sigma_{kl,i}^{0} u_{k,l} - \sigma_{ij,jk}^{0} u_{k}\) can be regarded as a configurational force.

With Eqs. 56 and 57, it is clear that \(S_{{\left( {ij} \right)k}}^{0} = \sigma_{ij,k}^{0}\) and \(K_{ik}^{0} = \sigma_{ij,jk}^{0}\) in Eqs. 3 and 4. Since \(\sigma_{kl}^{0} = \sigma_{lk}^{0}\) and \(C_{ijkl} = C_{ijlk}\), we can also replace \(u_{k,l}\) with \(e_{kl}\).

In addition, we should distinguish the incremental second Piola–Kirchhoff stress from the incremental Cauchy stress for inhomogeneous media with pre-stresses. For example, \(\sigma_{ij}\) in Eq. 56 is actually the incremental second Piola–Kirchhoff stresses, which is nonzero even under rigid translations. This is well known in finite deformation theory [67]. However, the incremental Cauchy stress should be zero under rigid movements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Z. Understanding the first-order inhomogeneous linear elasticity through local gauge transformations. Arch Appl Mech 92, 2843–2858 (2022). https://doi.org/10.1007/s00419-022-02199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02199-x

Keywords

Mathematics Subject Classification

Navigation