Skip to main content
Log in

Imaging performance of trolling mode atomic force microscopy: investigation of effective parameters

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, we investigate the limitations and influence of various factors on the performance of trolling mode atomic force microscopy (TR-AFM). For this purpose, at first, based on the governing equations of motion and using a conventional control method, a simulation tool capable of correctly simulating the imaging procedure in TR-AFM is developed. Then based on the developed simulation tool, imaging of different surfaces is performed, and the effect of different factors on the image quality is analyzed. The flexibility of nanoneedle in TR-AFM has unpredictable effects on dynamics of system as well as imaging performance. One problem in imaging is due to coexistence of two stable responses (bistability) which can reduce the accuracy of the images. A qualitative investigation of the nonlinear behavior of the TR-AFM reveals that owing to the nonlinear characteristics of the tip–sample interactions, there often exist two stable responses for a given set of parameters. Hence, the possibility of multiple stable responses and their effect on the imaging performance of various surfaces have been thoroughly investigated. Moreover, the influence of horizontal displacement of nanoneedle tip on image quality at different scanning speeds in the both presence and absence of measurement noise are examined. Finally, the scanning operation for a 3D sample using a 3D resonator model considering nanoneedle tip out-of-plane displacement in a real-time operating system is simulated, and the effect of tip out-of-plane displacement and cantilever scanning direction on the image quality are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(a_{i}\)(i = 1,2,…,36):

The system parameters (are presented in Appendix 1)

\(b_{b}\) :

Microbeam width

\(b_{i}\)(i = 1,2,…,16):

The coefficients of the ordinary differential equations governing the resonator in terms of the system parameters (are presented in Appendix 1)

\(c_{eu}\) :

Euler constant

\(p_{i}\) (i = 1,2,…,18):

The coefficients of the dimensionless state-space equations governing the resonator in terms of the system parameters (are presented in Appendix 1)

\(C_{a}\) :

Air damping coefficient

\(C_{{d_{i} }}\)(i = 1,2):

Transverse and longitudinal drag coefficients of the nanoneedle moving in liquid

\(C_{m}\) :

Damping coefficient of the meniscus

\(C_{s}\) :

Microbeam structural damping coefficient

\(d\) :

Piezo base displacement

\(D_{{{\text{mol}}}}\) :

Molecular diameter

\({\text{EI}}_{b}\) :

Microbeam flexural rigidity

\({\text{EI}}_{n}\) :

Nanoneedle flexural rigidity

\(f_{b} \left( . \right)\) :

First assumed mode shape corresponding to the microbeam

\(f_{n} \left( . \right)\) :

First assumed mode shape corresponding to the nanoneedle

\(F_{{h_{s} }}\) :

Hydrostatic buoyant force

\(F_{m}\) :

Meniscus force

\(F_{{m_{s} }}\) :

Hydrostatic meniscus force

\(F_{V}\) :

Tip-sample force

\(g\left( . \right)\) :

A polynomial utilized to define a change of variable

\(g_{a}\) :

Gravity acceleration

\(h_{b}\) :

Microbeam height

\(h_{m}\) :

Meniscus height

\(H_{{{\text{tm}}}}\) :

Distance from the tip center of mass to bottom of the microbeam

\(I_{{{\text{tm}}}}\) :

Tip-mass principal moment of inertia corresponding to its principal axes parallel to \(\hat{k}_{2}\) unit-vector

\(K_{m}\) :

Stiffness of the meniscus

\(L_{0}\) :

Length of the submerged part of the nanoneedle in liquid

\(L_{b}\) :

Microbeam length

\(L_{{{\text{dl}}}}\) :

A base length of the order of 10 nm to create dimensionless parameters

\(L_{n}\) :

Nanoneedle length

\(L_{{{\text{tm}}}}\) :

Tip-mass length

\(m_{{{\text{tm}}}}\) :

Mass of the tip mass

\(q_{{{\text{nt}}}}\) :

Transverse displacement of the nanoneedle end relative to the tip mass

\(R_{n}\) :

Nanoneedle radius

\(R_{{{\text{pt}}}}\) :

Probe tip radius

\(y_{b}\) :

Vertical displacement of the microbeam end

\(y_{s}\) :

Vertical position (along \(\hat{j}_{r}\) unit vector) of the sample surface in the fixed reference frame (we also name this parameter as tip-sample distance)

\(y_{{{\text{ts}}}}\) :

Vertical nanoneedle tip-sample distance

\(\alpha\) :

Angle of the microbeam orientation relative to the horizon (shown in Fig. 1.)

\(\beta\) :

Excitation angle of the microbeam

\({\Lambda }\) :

Excitation amplitude

\({\Lambda }_{0}\) :

Free oscillation amplitude

\({\Lambda }_{{{\text{dl}}}}\) :

Dimensionless excitation amplitude

\(\rho_{b}\) :

Microbeam density

\(\rho_{{{\text{liq}}}}\) :

Liquid density

\(\rho_{n}\) :

Nanoneedle mass per unit length

\(\rho_{{{\text{tm}}}}\) :

Tip-mass density

\(\tau\) :

Dimensionless time variable

\(\omega\) :

Excitation frequency

\(\omega_{1}\) :

The first natural frequency of the microbeam

\({\Omega }\) :

Dimensionless excitation frequency

References

  1. Korayem, M.H., Mozafari, M., Sooha, Y.H., Rastegar, Z.: Development and application of rough viscoelastic contact models in the first phase of 3D manipulation for biological micro-/nanoparticles by AFM. Arch. Appl. Mech. 91(9), 3739–3753 (2021). https://doi.org/10.1007/S00419-021-01967-5

    Article  Google Scholar 

  2. Korayem, M.H., Korayem, A.H.: Modeling of AFM with a piezoelectric layer based on the modified couple stress theory with geometric discontinuities. Appl. Math. Model. 45, 439–456 (2017). https://doi.org/10.1016/j.apm.2017.01.008

    Article  MathSciNet  MATH  Google Scholar 

  3. Vahidi-Moghaddam, A., Rajaei, A., Vatankhah, R., Hairi-Yazdi, M.R.: Terminal sliding mode control with non-symmetric input saturation for vibration suppression of electrostatically actuated nanobeams in the presence of Casimir force. Appl. Math. Model. 60, 416–434 (2018). https://doi.org/10.1016/j.apm.2018.03.025

    Article  MathSciNet  MATH  Google Scholar 

  4. SoltanRezaee, M., Afrashi, M.: Modeling the nonlinear pull-in behavior of tunable nano-switches. Int. J. Eng. Sci. 109, 1339–1351 (2016). https://doi.org/10.1016/j.ijengsci.2016.09.008

    Article  MathSciNet  MATH  Google Scholar 

  5. Minary-Jolandan, M., Yu, M.F.: Nanomechanical imaging of soft samples in liquid using atomic force microscopy. J. Appl. Phys. 114(13), 134313 (2013). https://doi.org/10.1063/1.4824080

    Article  Google Scholar 

  6. Habibnejad Korayem, A., Taghizadeh, M., Habibnejad Korayem, M.: Geometric parameters effect of the atomic force microscopy smart piezoelectric cantilever on the different rough surface topography quality by considering the capillary force. Microsc. Res. Tech. 82(5), 517–529 (2019). https://doi.org/10.1002/jemt.23195

    Article  MATH  Google Scholar 

  7. Lu, C., Yuan, R., Li, P.: A TRT-LBM model of squeeze film air damping of micro-beam in the transition regime. Arch. Appl. Mech. 2021, 1–10 (2021). https://doi.org/10.1007/S00419-021-02024-X

    Article  Google Scholar 

  8. Ardekany, A.N., and Mehrvarz, A.: Vibrations suppression of a Euler-Bernoulli beam in contact with a fluid using piezoelectric actuators. In: 4th RSI International Conference on Robotics and Mechatronics, ICRoM, , pp. 285–288 (2017). https://doi.org/10.1109/ICRoM.2016.7886860.

  9. Mehrvarz, A., Najafi Ardekani, A., Khodaei, M.J., Jalili, N.: Vibration analysis and control of fluid containers using piezoelectrically-excited side wall. J. Vib. Control 25(7), 1393–1408 (2019). https://doi.org/10.1177/1077546318822374

    Article  MathSciNet  Google Scholar 

  10. Pasha, A.H.G., Sadeghi, A.: Experimental and theoretical investigations about the nonlinear vibrations of rectangular atomic force microscope cantilevers immersed in different liquids. Arch. Appl. Mech. 90(9), 1893–1917 (2020). https://doi.org/10.1007/S00419-020-01703-5

    Article  Google Scholar 

  11. Minary-Jolandan, M., Tajik, A., Wang, N., Yu, M.F.: Intrinsically high-Q dynamic AFM imaging in liquid with a significantly extended needle tip. Nanotechnology 23(23), 235704 (2012). https://doi.org/10.1088/0957-4484/23/23/235704

    Article  Google Scholar 

  12. Rodríguez, T.R., García, R.: Theory of Q control in atomic force microscopy. Appl. Phys. Lett. 82(26), 4821–4823 (2003). https://doi.org/10.1063/1.1584790

    Article  Google Scholar 

  13. Sajjadi, M., Pishkenari, H.N., Vossoughi, G.: Dynamic modeling of trolling-mode AFM: considering effects of cantilever torsion, nanoneedle flexibility and liquid-nanoneedle interactions. Ultramicroscopy 182, 99–111 (2017). https://doi.org/10.1016/j.ultramic.2017.06.009

    Article  Google Scholar 

  14. García, R.: Amplitude Modulation Atomic Force Microscopy. (2010)

  15. Keyvani, A., Sadeghian, H., Tamer, M.S., Goosen, J.F.L., Van Keulen, F.: Minimizing tip-sample forces and enhancing sensitivity in atomic force microscopy with dynamically compliant cantilevers. J. Appl. Phys. 121(24), 244505 (2017). https://doi.org/10.1063/1.4990276

    Article  Google Scholar 

  16. Korayem, A.H., Ghasemi, P., Korayem, M.H.: The effect of liquid medium on vibration and control of the <scp>AFM</scp> piezoelectric microcantilever. Microsc. Res. Tech. 83(11), 1427–1437 (2020). https://doi.org/10.1002/jemt.23535

    Article  Google Scholar 

  17. Stancioiu, D., Ouyang, H., Yang, J.: Numerical and experimental investigations into feedback control of continuous beam structures under moving loads. Arch. Appl. Mech. 91(6), 2641–2659 (2021). https://doi.org/10.1007/S00419-021-01910-8

    Article  Google Scholar 

  18. Settimi, V., Gottlieb, O., Rega, G.: Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dyn. 79(4), 2675–2698 (2015). https://doi.org/10.1007/s11071-014-1840-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Arafat, H.N., Nayfeh, A.H., Abdel-Rahman, E.M.: Modal interactions in contact-mode atomic force microscopes. Nonlinear Dyn. 54(1–2), 151–166 (2008). https://doi.org/10.1007/s11071-008-9388-5

    Article  MATH  Google Scholar 

  20. Abbasi, M.: A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory. Micron 107, 20–27 (2018). https://doi.org/10.1016/j.micron.2018.01.008

    Article  Google Scholar 

  21. Gleyzes, P., Kuo, P.K., Boccara, A.C.: Bistable behavior of a vibrating tip near a solid surface. Appl. Phys. Lett. 58(25), 2989–2991 (1991). https://doi.org/10.1063/1.104690

    Article  Google Scholar 

  22. García, R., San Paulo, A.: Dynamics of a vibrating tip near or in intermittent contact with a surface. Phys. Rev. B 61(20), R13381–R13384 (2000). https://doi.org/10.1103/PhysRevB.61.R13381

    Article  Google Scholar 

  23. Pishkenari, H.N., Behzad, M., Meghdari, A.: Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation. Chaos Solitons Fractals 37(3), 748–762 (2008). https://doi.org/10.1016/j.chaos.2006.09.079

    Article  Google Scholar 

  24. Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R.: Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment. Phys. Rev. B 66(11), 1–10 (2002). https://doi.org/10.1103/PhysRevB.66.115409

    Article  Google Scholar 

  25. Abdi, A., Pishkenari, H.N., Keramati, R., Minary-Jolandan, M.: Dynamics of the nanoneedle probe in trolling mode AFM. Nanotechnology 26(20), 205702 (2015). https://doi.org/10.1088/0957-4484/26/20/205702

    Article  Google Scholar 

  26. Salehi-Khojin, A., Jalili, N., NimaMahmoodi, S.: Vibration analysis of vector piezoresponse force microscopy with coupled flexural-longitudinal and lateral-torsional motions. J. Sound Vib. 322(4–5), 1081–1099 (2009). https://doi.org/10.1016/j.jsv.2008.11.039

    Article  Google Scholar 

  27. Zhang, Y., Zhao, H., Zuo, L.: Contact dynamics of tapping mode atomic force microscopy. J. Sound Vib. 331(23), 5141–5152 (2012). https://doi.org/10.1016/j.jsv.2012.07.014

    Article  Google Scholar 

  28. Pishkenari, H.N., Meghdari, A.: Effects of higher oscillation modes on TM-AFM measurements. Ultramicroscopy 111(2), 107–116 (2011). https://doi.org/10.1016/j.ultramic.2010.10.015

    Article  Google Scholar 

  29. Pishkenari, H.N., Mahboobi, S.H., Meghdari, A.: Hybrid finite-element method-molecular dynamics approach for modelling of non-contact atomic force microscopy imaging. Micro Nano Lett. 6(6), 412–416 (2011). https://doi.org/10.1049/mnl.2011.0173

    Article  Google Scholar 

  30. Pishkenari, H.N., Jalili, N., Meghdari, A.: Acquisition of high-precision images for non-contact atomic force microscopy. Mechatronics 16(10), 655–664 (2006). https://doi.org/10.1016/j.mechatronics.2006.04.002

    Article  Google Scholar 

  31. Pishkenari, H.N., Meghdari, A.: Influence of the tip mass on the tip-sample interactions in TM-AFM. Ultramicroscopy 111(8), 1423–1436 (2011). https://doi.org/10.1016/j.ultramic.2011.05.010

    Article  Google Scholar 

  32. Bahrami, A., Nayfeh, A.H.: On the dynamics of tapping mode atomic force microscope probes. Nonlinear Dyn. 70(2), 1605–1617 (2012). https://doi.org/10.1007/s11071-012-0560-6

    Article  Google Scholar 

  33. Korayem, A.H., Imani, F., Korayem, M.H.: Analysis of the atomic force microscopy vibration behavior using the Timoshenko theory by multi-scale method in the air environment. Microsc. Res. Tech. 82(10), 1787–1801 (2019). https://doi.org/10.1002/jemt.23345

    Article  Google Scholar 

  34. Ashhab, M., Salapaka, M.V., Dahleh, M., Mezić, I.: Dynamical analysis and control of microcantilevers. Automatica 35(10), 1663–1670 (1999). https://doi.org/10.1016/S0005-1098(99)00077-1

    Article  MATH  Google Scholar 

  35. Paulo, Á.S., García, R.: Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy. Phys. Rev. B 64(19), 193411 (2001). https://doi.org/10.1103/PhysRevB.64.193411

    Article  Google Scholar 

  36. Hashemi, N., Dankowicz, H., Paul, M.R.: The nonlinear dynamics of tapping mode atomic force microscopy with capillary force interactions. J. Appl. Phys. 103(9), 093512 (2008). https://doi.org/10.1063/1.2913054

    Article  Google Scholar 

  37. Jalili, N., Dadfarnia, M., Dawson, D.M.: A fresh insight into the microcantilever-sample interaction problem in non-contact atomic force microscopy. J. Dyn. Syst. Meas. Control. Trans. ASME 126(2), 327–335 (2004). https://doi.org/10.1115/1.1767852

    Article  Google Scholar 

  38. Nguyen, Q.C., Krylov, S.: Nonlinear tracking control of vibration amplitude for a parametrically excited microcantilever beam. J. Sound Vib. 338, 91–104 (2015). https://doi.org/10.1016/j.jsv.2014.10.029

    Article  Google Scholar 

  39. Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R.: Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy 97(1–4), 185–198 (2003). https://doi.org/10.1016/S0304-3991(03)00043-3

    Article  Google Scholar 

  40. Korayem, A.H., Korayem, M.H.: Effect of three types of piezoelectric cantilever on the topography quality in the vicinity of rough surface in a fluid ambient. Appl. Math. Model. 65, 333–347 (2019). https://doi.org/10.1016/j.apm.2018.08.034

    Article  MathSciNet  MATH  Google Scholar 

  41. Seifnejad Haghighi, M., Sajjadi, M., Nejat Pishkenari, H.: Model-based topography estimation in trolling mode atomic force microscopy. Appl. Math. Model. 77(20), 1025–1040 (2020). https://doi.org/10.1016/j.apm.2019.08.014

    Article  MathSciNet  MATH  Google Scholar 

  42. Sajjadi, M., Pishkenari, H.N., Vossoughi, G.: On the nonlinear dynamics of trolling-mode AFM: analytical solution using multiple time scales method. J. Sound Vib. 423, 263–286 (2018). https://doi.org/10.1016/J.JSV.2018.02.047

    Article  Google Scholar 

  43. Chahari, M., Sajjadi, M.: Modeling of eccentric nanoneedle in trolling-mode atomic force microscope. Microsc. Res. Tech. (2020). https://doi.org/10.1002/jemt.23622

    Article  Google Scholar 

  44. Shampine, L.F., Reichelt, M.W.: The MATLAB ode suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997). https://doi.org/10.1137/S1064827594276424

    Article  MathSciNet  MATH  Google Scholar 

  45. García, R., Paulo, A.S.: Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys. Rev. B. 60(7), 4961–4967 (1999). https://doi.org/10.1103/PhysRevB.60.4961

    Article  Google Scholar 

  46. Picone, R., Ren, X., Ivanovitch, K.D., Clarke, J.D.W., McKendry, R.A., Baum, B.: A polarised population of dynamic microtubules mediates homeostatic length control in animal cells. PLoS Biol. 8(11), e1000542 (2010). https://doi.org/10.1371/journal.pbio.1000542

    Article  Google Scholar 

  47. Voigtländer, B.: Noise in atomic force microscopy. Nanosci. Technol. 69, 255–267 (2015). https://doi.org/10.1007/978-3-662-45240-0_18

    Article  Google Scholar 

Download references

Funding

This research received no specific Grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Sajjadi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Coefficients of the derived mathematical model

Appendix 1: Coefficients of the derived mathematical model

The coefficients \(b_{i}\) (i = 1,2,…,16) are as follows:

$$\begin{aligned} b_{1} & = - a_{2} c_{{\alpha \beta }} \mathop \smallint \limits_{0}^{{L_{b} }} f_{b} \left( x \right)g\left( x \right)\,{\text{d}}x + a_{5} c_{\alpha } \mathop \smallint \limits_{0}^{{L_{b} }} f_{b} \left( x \right)\,{\text{d}}x \\ &\quad + \left( { - g\left( {L_{b} } \right)c_{{\alpha \beta }} a_{{11}} - c_{{\alpha \beta }} a_{{20}} \left( {\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,g\left( {L_{b} } \right)} \right) + c_{\alpha } a_{{21}} } \right)\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right) \\ &\quad + f_{b} \left( {L_{b} } \right)\left( { - g\left( {L_{b} } \right)c_{{\alpha \beta }} a_{{10}} - c_{{\alpha \beta }} a_{{11}} \left( {\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,g\left( {L_{b} } \right)} \right) + c_{\alpha } a_{{12}} } \right), \\ b_{2} & = - a_{3} c_{{\alpha \beta }} \mathop \smallint \limits_{0}^{{L_{b} }} f_{b} \left( x \right)g^{\prime}\left( x \right)\,{\text{d}}x - a_{4} c_{{\alpha \beta }} \mathop \smallint \limits_{0}^{{L_{b} }} f_{b} \left( x \right)g\left( x \right)\,{\text{d}}x + a_{6} c_{\alpha } \mathop \smallint \limits_{0}^{{L_{b} }} f_{b} \left( x \right)\,{\text{d}}x\\ &\quad + \left( { - g\left( {L_{b} } \right)c_{{\alpha \beta }} a_{9} - c_{{\alpha \beta }} a_{{19}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,g\left( {L_{b} } \right) + a_{{22}} c_{\alpha } } \right)\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)\\ &\quad + f_{b} \left( {L_{b} } \right)\left( { - g\left( {L_{b} } \right)c_{{\alpha \beta }} a_{8} - c_{{\alpha \beta }} a_{9} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,g\left( {L_{b} } \right) + c_{\alpha } a_{{13}} } \right), \\ b_{3} & = - a_{1} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)\frac{{{\text{d}}^{2} }}{{{\text{d}}L_{b} ^{2} }}\,g\left( {L_{b} } \right)c_{{\alpha \beta }} + \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)a_{{18}} g\left( {L_{b} } \right)c_{{\alpha \beta }} \\&\quad - f_{b} \left( {L_{b} } \right)a_{7} g\left( {L_{b} } \right)c_{{\alpha \beta }} + a_{1} f_{b} \left( {L_{b} } \right)\frac{{{\text{d}}^{3} }}{{{\text{d}}L_{b} ^{3} }}\,g\left( {L_{b} } \right)c_{{\alpha \beta }}\\ &\quad + c_{\alpha } \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)a_{{23}} + c_{\alpha } f_{b} \left( {L_{b} } \right)a_{{14}} - a_{1} c_{{\alpha \beta }} \mathop \smallint \limits_{0}^{{L_{b} }} f_{b} \left( x \right)g^{{\left( 4 \right)}} \left( x \right)\,{\text{d}}x, \\ b_{4} & = f_{b} \left( {L_{b} } \right)a_{{10}} + \frac{{a_{2} \mathop \smallint \nolimits_{0}^{{L_{b} }} f_{b} \left( x \right)^{2} \,{\text{d}}x}}{{f_{b} \left( {L_{b} } \right)}} + \frac{{\left( {\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)} \right)^{2} a_{{20}} }}{{f_{b} \left( {L_{b} } \right)}} + 2a_{{11}} \left( {\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)} \right), \\ b_{5} & = \frac{1}{{f_{b} \left( {L_{b} } \right)}}\left( {\left( {\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)} \right)^{2} a_{{19}} + 2a_{9} \left( {\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)} \right)f_{b} \left( {L_{b} } \right)}\right. \\ &\quad \left. { + f_{b} \left( {L_{b} } \right)^{2} a_{8} + a_{4} \mathop \smallint \limits_{0}^{{L_{b} }} f_{b} \left( x \right)^{2} \,{\text{d}}x + a_{3} \mathop \smallint \limits_{0}^{{L_{b} }} f_{b} \left( x \right)f_{b} {\text{'}}\left( x \right)\,{\text{d}}x} \right), \\ b_{6} & = f_{b} \left( {L_{b} } \right)a_{7} + \frac{{a_{1} \mathop \smallint \nolimits_{0}^{{L_{b} }} f_{b} ^{{\prime \prime }} \left( x \right)^{2} \,{\text{d}}x}}{{f_{b} \left( {L_{b} } \right)}} - a_{{18}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right), \\ b_{7} & = \frac{{c_{\alpha } }}{{f_{n} \left( {L_{n} } \right)}}\left( {\left( {a_{{26}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right) + a_{{15}} f_{b} \left( {L_{b} } \right)} \right)\mathop \smallint \limits_{0}^{{L_{n} }} f_{n} \left( z \right)\,{\text{d}}z + a_{{27}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)\mathop \smallint \limits_{0}^{{L_{n} }} f_{n} \left( z \right)z\,{\text{d}}z} \right), \\ b_{8} & = \frac{{c_{\alpha } }}{{f_{n} \left( {L_{n} } \right)}}\left( {\left( {a_{{24}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}f_{b} \left( {L_{b} } \right) + a_{{16}} f_{b} \left( {L_{b} } \right)} \right)\mathop \smallint \limits_{{L_{n} - L_{0} }}^{{L_{n} }} f_{n} \left( z \right)\,{\text{d}}z + a_{{25}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}f_{b} \left( {L_{b} } \right)\mathop \smallint \limits_{{L_{n} - L_{0} }}^{{L_{n} }} f_{n} \left( z \right)z\,{\text{d}}z} \right), \\ b_{9} & = c_{\alpha } \left( {\left( {\frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)} \right)a_{{28}} - f_{b} \left( {L_{b} } \right)a_{{17}} } \right), \\ b_{{10}} & = - a_{{27}} c_{{\alpha \beta }} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,g\left( {L_{b} } \right)\mathop \smallint \limits_{0}^{{L_{n} }} f_{n} \left( z \right)z\,{\text{d}}z - \mathop \smallint \limits_{0}^{{L_{n} }} f_{n} \left( z \right)\,{\text{d}}z\left( {a_{{30}} c_{{\alpha \beta }} c_{\alpha } \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,g\left( {L_{b} } \right) + a_{{15}} c_{{\alpha \beta }} g\left( {L_{b} } \right) - a_{{31}} c_{\alpha } } \right), \\ b_{{11}} & = - a_{{25}} c_{{\alpha \beta }} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,g\left( {L_{b} } \right)\mathop \smallint \limits_{0}^{{L_{n} }} f_{n} \left( z \right)\hat{u}\left( {z - L_{n} + L_{0} } \right)z\,{\text{d}}z \\ & \quad - \mathop \smallint \limits_{0}^{{L_{n} }} f_{n} \left( z \right)\hat{u}\left( {z - L_{n} + L_{0} } \right)\,{\text{d}}z\left( {g\left( {L_{b} } \right)a_{{16}} c_{{\alpha \beta }} + a_{{24}} c_{{\alpha \beta }} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,g\left( {L_{b} } \right) - a_{{32}} c_{\alpha } } \right), \\ b_{{12}} & = \frac{{c_{\alpha } a_{{30}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)\mathop \smallint \nolimits_{0}^{{L_{n} }} f_{n} \left( z \right)\,{\text{d}}z}}{{f_{b} \left( {L_{b} } \right)}} + \frac{{a_{{27}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)\mathop \smallint \nolimits_{0}^{{L_{n} }} f_{n} \left( z \right)z\,{\text{d}}z}}{{f_{b} \left( {L_{b} } \right)}} + a_{{15}} \mathop \smallint \limits_{0}^{{L_{n} }} f_{n} \left( z \right)\,{\text{d}}z, \\ b_{{13}}& = \frac{{a_{{24}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)\mathop \smallint \nolimits_{0}^{{L_{n} }} f_{n} \left( z \right)\hat{u}\left( {z - L_{n} + L_{0} } \right)\,{\text{d}}z}}{{f_{b} \left( {L_{b} } \right)}} + a_{{16}} \mathop \smallint \limits_{0}^{{L_{n} }} f_{n} \left( z \right)\hat{u}\left( {z - L_{n} + L_{0} } \right)\,{\text{d}}z \\ &\quad + \frac{{a_{{25}} \frac{{\text{d}}}{{{\text{d}}L_{b} }}\,f_{b} \left( {L_{b} } \right)\mathop \smallint \nolimits_{0}^{{L_{n} }} f_{n} \left( z \right)\hat{u}\left( {z - L_{n} + L_{0} } \right)z\,{\text{d}}z}}{{f_{b} \left( {L_{b} } \right)}}, \\ b_{{14}} & = \frac{{a_{{27}} c_{\alpha } \mathop \smallint \nolimits_{0}^{{L_{n} }} f_{n} \left( z \right)^{2} \,{\text{d}}z}}{{f_{n} \left( {L_{n} } \right)}}, \\ b_{{15}} & = \frac{{a_{{25}} c_{\alpha } \mathop \smallint \nolimits_{0}^{{L_{n} }} \hat{u}\left( {z - L_{n} + L_{0} } \right)f_{n} \left( z \right)^{2} \,{\text{d}}z}}{{f_{n} \left( {L_{n} } \right)}}, \\ b_{{16}} &= \frac{{c_{\alpha } a_{{29}} \mathop \smallint \nolimits_{0}^{{L_{n} }} \left( {\frac{{{\text{d}}^{2} }}{{{\text{d}}z^{2} }}\,f_{n} \left( z \right)} \right)^{2} \,{\text{d}}z}}{{f_{n} \left( {L_{n} } \right)}}, \\ \end{aligned}$$
(14)

where \(c_{{\upalpha }} = {\text{cos}}\left( {\upalpha } \right)\), \(c_{\alpha \beta } = {\text{cos}}\left( {{\upbeta } - {\upalpha }} \right)\), and \(\hat{u}\left( . \right)\) is unit-step function (Heaviside), \(g\left( x \right)\) is a fourth-order polynomial the constants of which are obtained by satisfying the following equations:

$$g\left( 0 \right) = 0 , g^{\prime}\left( 0 \right) = 0,\; g\left( {L_{b} } \right) = 1,\;b_{1} = 0 , b_{10} = 0,$$
(15)

moreover, the coefficients \(a_{i}\) (i = 1,2,…,36) are as follows:

$$\begin{aligned} a_{1} & = {\text{EI}}_{b} \\ a_{2} & = A_{b} \rho _{b} \\ a_{3} & = C_{s} \\ a_{4} & = C_{a} \\ a_{5} & = A_{b} {\text{cos}}\left( \beta \right)\rho _{b} \\ a_{6} & = C_{a} {\text{cos}}\left( \beta \right) \\ a_{7} & = {\text{cos}}\left( \alpha \right)^{2} \left( {A_{n} {\gamma }_{L} + K_{m} } \right) \\ a_{8} & = \left( {\left( {C_{{d_{2} }} - C_{{d_{1} }} } \right)L_{0} + C_{m} } \right){\text{cos}}\left( \alpha \right)^{2} + L_{0} C_{{d_{1} }} \\ a_{9} & = {\text{sin}}\left( \alpha \right)\left( {\left( {\left( {C_{{d_{1} }} - C_{{d_{2} }} } \right)L_{0} - C_{m} } \right)L_{{{\text{tm}}}} {\text{cos}}\left( \alpha \right) - \frac{1}{2}C_{{d_{1} }} L_{0} \left( {L_{0} - 2L_{n} } \right)} \right) \\ a_{{10}} & = L_{n} \rho _{n} + m_{{{\text{tm}}}} \\ a_{{11}} & = \frac{1}{2}\rho _{n} L_{n} ^{2} {\text{sin}}\left( \alpha \right) \\ a_{{12}} & = {\text{cos}}\left( \beta \right)\left( {L_{n} \rho _{n} + m_{{{\text{tm}}}} } \right) \\ a_{{13}} & = - {\text{cos}}\left( \alpha \right){\text{cos}}\left( { - \beta + \alpha } \right)\left( {\left( {C_{{d_{1} }} - C_{{d_{2} }} } \right)L_{0} - C_{m} } \right) + C_{{d_{1} }} {\text{cos}}\left( \beta \right)L_{0} \\ a_{{14}} & = {\text{cos}}\left( \alpha \right){\text{cos}}\left( { - \beta + \alpha } \right)\left( {A_{n} \gamma _{L} + K_{m} } \right) \\ a_{{15}} & = \rho _{n} {\text{sin}}\left( \alpha \right) \\ a_{{16}} & = C_{{d_{1} }} {\text{sin}}\left( \alpha \right) \\ a_{{17}} & = {\text{cos}}\left( \alpha \right) \\ a_{{18}} & = L_{{{\text{tm}}}} {\text{cos}}\left( \alpha \right){\text{sin}}\left( \alpha \right)\left( {A_{n} \gamma _{L} + K_{m} } \right) \\ a_{{19}} & = - L_{{{\text{tm}}}} ^{2} \left( {\left( {C_{{d_{2} }} - C_{{d_{1} }} } \right)L_{0} + C_{m} } \right){\text{cos}}\left( \alpha \right)^{2} - C_{{d_{1} }} L_{0} L_{{{\text{tm}}}} \left( {L_{0} - 2L_{n} } \right){\text{cos}}\left( \alpha \right) \\ &\quad + \frac{1}{3}C_{{d_{1} }} L_{0} ^{3} - C_{{d_{1} }} L_{0} ^{2} L_{n} + \left( {C_{{d_{1} }} L_{n} ^{2} + C_{{d_{2} }} L_{{{\text{tm}}}} ^{2} } \right)L_{0} + C_{m} L_{{{\text{tm}}}} ^{2} \\ a_{{20}} & = I_{{{\text{tm}}}} + L_{n} \rho _{n} \left( {{\text{cos}}\left( \alpha \right)L_{{{\text{tm}}}} L_{n} + \frac{1}{3}L_{n} ^{2} + L_{{{\text{tm}}}} ^{2} } \right) + H_{{{\text{tm}}}} ^{2} m_{{{\text{tm}}}} \\ a_{{21}} & = \frac{1}{2}\left( { - {\text{cos}}\left( \alpha \right)L_{n} ^{2} \rho _{n} - 2L_{n} L_{{{\text{tm}}}} \rho _{n} - 2H_{{{\text{tm}}}} m_{{{\text{tm}}}} } \right){\text{sin}}\left( \beta \right) + \frac{1}{2}L_{n} ^{2} {\text{cos}}\left( \beta \right){\text{sin}}\left( \alpha \right)\rho _{n} \\ a_{{22}} & = - {\text{sin}}\left( \beta \right)L_{{{\text{tm}}}} \left( {C_{{d_{2} }} L_{0} + C_{m} } \right) - {\text{sin}}\left( { - \beta + \alpha } \right)\left( {{\text{cos}}\left( \alpha \right)L_{{{\text{tm}}}} \left( {\left( {C_{{d_{2} }} - C_{{d_{1} }} } \right)L_{0} + C_{m} } \right) + \frac{1}{2}C_{{d_{1} }} L_{0} \left( {L_{0} - 2L_{n} } \right)} \right) \\ a_{{23}} & = - L_{{{\text{tm}}}} \left( {{\text{sin}}\left( { - \beta + \alpha } \right){\text{cos}}\left( \alpha \right) + {\text{sin}}\left( \beta \right)} \right)\left( {A_{n} {\gamma }_{L} + K_{m} } \right) \\ a_{{24}} & = C_{{d_{1} }} L_{{{\text{tm}}}} {\text{cos}}\left( \alpha \right) \\ a_{{25}} & = C_{{d_{1} }} \\ a_{{26}} & = \rho _{n} L_{{{\text{tm}}}} {\text{cos}}\left( \alpha \right) \\ a_{{27}} & = \rho _{n} \\ a_{{28}} & = L_{{{\text{tm}}}} {\text{sin}}\left( \alpha \right) \\ a_{{29}} & = {\text{EI}}_{n} \\ a_{{30}} & = \rho _{n} L_{{{\text{tm}}}} \\ a_{{31}} & = \rho _{n} {\text{sin}}\left( { - \beta + \alpha } \right) \\ a_{{32}} & = C_{{d_{1} }} {\text{sin}}\left( { - \beta + \alpha } \right) \\ a_{{33}} & = A_{b} L_{b} \rho _{b} + L_{n} \rho _{n} + m_{p} + m_{{{\text{tm}}}} \\ a_{{34}} & = C_{{d_{2} }} L_{0} + C_{m} + C_{a} {\text{cos}}\left( \beta \right)^{2} L + \left( { - \frac{1}{2}{\text{cos}}\left( { - 2\beta + 2\alpha } \right) + \frac{1}{2}} \right)\left( {\left( {C_{{d_{1} }} - C_{{d_{2} }} } \right)L_{0} - C_{m} } \right) \\ a_{{35}} & = 2\left( {A_{n} {\gamma }_{L} + K_{m} } \right)\left( {\frac{1}{4}{\text{cos}}\left( { - 2\beta + 2\alpha } \right) + \frac{1}{4}} \right) \\ a_{{36}} & = {\text{cos}}\left( { - \beta + \alpha } \right) \\ \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjadi, M., Chahari, M. & Nejat Pishkenari, H. Imaging performance of trolling mode atomic force microscopy: investigation of effective parameters. Arch Appl Mech 92, 1551–1570 (2022). https://doi.org/10.1007/s00419-022-02129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02129-x

Keywords

Navigation