Skip to main content
Log in

Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper uses the finite element method to simulate the mechanical, electric, and polarization behaviors of piezoelectric nanoplates resting on elastic foundations subjected to static loads, in which the flexoelectric effect is taken into consideration. The finite element formulations are established by employing a new type of shear deformation theory, which does not need any shear correction factors, but still accurately describes the stress field of the plate. The numerical results show clearly that the flexoelectric effect has a strong influence on the mechanical responses of the nanoplates. In particular, the normal stress distribution in the thickness direction is no longer linear when the flexoelectric coefficient is large enough, and this phenomenon differs completely from that of conventional plates. In addition, the distribution of the electric field and the polarization also depend on boundary conditions, which were not investigated in the published works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data used to support the findings of this study are included in the article.

References

  1. Yan, Z.: Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Mater. Struct. 25(3), 13 (2016). https://doi.org/10.1088/0964-1726/25/3/035017

    Article  Google Scholar 

  2. Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226(9), 3097–3110 (2015). https://doi.org/10.1007/s00707-015-1373-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, A., Zhou, S., Qi, L.: Size-dependent electromechanical coupling behaviors of circular micro-plate due to flexoelectricity. Appl. Phys. A 122(10), 918 (2016). https://doi.org/10.1007/s00339-016-0455-3

    Article  Google Scholar 

  4. Wang, X., Zhang, R., Jiang, L.: A study of the flexoelectric effect on the electroelastic fields of a cantilevered piezoelectric nanoplate. Int. J. Appl. Mech. 09(04), 1750056 (2017). https://doi.org/10.1142/S1758825117500569

    Article  Google Scholar 

  5. He, L., Lou, J., Zhang, A., Wu, H., Du, J., Wang, J.: On the coupling effects of piezoelectricity and flexoelectricity in piezoelectric nanostructures. AIP Adv. 7(10), 105106 (2017). https://doi.org/10.1063/1.4994021

    Article  Google Scholar 

  6. Ebrahimi, F., Barati, M.: Static stability analysis of embedded flexoelectric nanoplates considering surface effects. Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1265-y

    Article  Google Scholar 

  7. Ghobadi, A., Beni, Y.T., Golestanian, H.: Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field. Arch. Appl. Mech. 90(9), 2025–2070 (2020). https://doi.org/10.1007/s00419-020-01708-0

    Article  Google Scholar 

  8. Amir, S., BabaAkbar-Zarei, H., Khorasani, M.: Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech. Based Des. Struct. Mach. 48(2), 146–163 (2020). https://doi.org/10.1080/15397734.2019.1624175

    Article  Google Scholar 

  9. Ghobadi, A., Beni, Y.T., Golestanian, H.: Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field. Int. J. Mech. Sci. 152, 118–137 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.049

    Article  Google Scholar 

  10. Ghobadi, A., Tadi Beni, Y., Golestanian, H.: Size dependent nonlinear bending analysis of a flexoelectric functionally graded nano-plate under thermo-electro-mechanical loads. J. Solid Mech. 12(1), 33–56 (2020). https://doi.org/10.22034/jsm.2019.569280.1296

    Article  MATH  Google Scholar 

  11. Giannakopoulos, A.E., Zisis, T.: Steady-state antiplane crack considering the flexoelectrics effect: surface waves and flexoelectric metamaterials. Arch. Appl. Mech. 91(2), 713–738 (2021). https://doi.org/10.1007/s00419-020-01815-y

    Article  Google Scholar 

  12. Qu, Y., Jin, F., Yang, J.: Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Arch. Appl. Mech. 91(5), 2027–2038 (2021). https://doi.org/10.1007/s00419-020-01867-0

    Article  Google Scholar 

  13. Yang, W., Hu, T., Liang, X., Shen, S.: On band structures of layered phononic crystals with flexoelectricity. Arch. Appl. Mech. 88(5), 629–644 (2018). https://doi.org/10.1007/s00419-017-1332-z

    Article  Google Scholar 

  14. Shimpi, R.: Refined plate theory and its variants. AIAA J. 40(1), 137–146 (2002)

    Article  Google Scholar 

  15. Thai, T., Park, T., Choi, D.-H.: An efficient shear deformation theory for vibration of functionally graded plates. Arch. Appl. Mech. 83, 137–149 (2013)

    Article  Google Scholar 

  16. Thai, H.-T., Vo, T.P.: A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl. Math. Model. 37(5), 3269–3281 (2013). https://doi.org/10.1016/j.apm.2012.08.008

    Article  MathSciNet  MATH  Google Scholar 

  17. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I., Adda.Bedia, E.A.: A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int. J. Mech. Sci. 53(4), 237–247 (2011). https://doi.org/10.1016/j.ijmecsci.2011.01.004

    Article  Google Scholar 

  18. Thai, H.-T., Choi, D.-H.: Finite element formulation of various four unknown shear deformation theories for functionally graded plates. Finite Elem. Anal. Des. 75, 50–61 (2013). https://doi.org/10.1016/j.finel.2013.07.003

    Article  MathSciNet  MATH  Google Scholar 

  19. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991). https://doi.org/10.1016/0020-7225(91)90165-Y

    Article  MATH  Google Scholar 

  20. Shu, L., Wei, X., Pang, T., Yao, X., Wang, C.: Symmetry of flexoelectric coefficients in crystalline medium. J. Appl. Phys. 110(10), 104106 (2011). https://doi.org/10.1063/1.3662196

    Article  Google Scholar 

  21. Han, J.-B., Liew, K.M.: Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations. Int. J. Mech. Sci. 39(9), 977–989 (1997). https://doi.org/10.1016/S0020-7403(97)00001-5

    Article  MATH  Google Scholar 

  22. Thai, H.-T., Park, M., Choi, D.-H.: A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation. Int. J. Mech. Sci. 73, 40–52 (2013). https://doi.org/10.1016/j.ijmecsci.2013.03.017

    Article  Google Scholar 

  23. Matsunaga, H.: Stress analysis of functionally graded plates subjected to thermal and mechanical loadings. Compos. Struct. 87(4), 344–357 (2009). https://doi.org/10.1016/j.compstruct.2008.02.002

    Article  Google Scholar 

Download references

Acknowledgements

This work gratefully acknowledges the support of Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 107.02-2020.18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Van Thom.

Ethics declarations

Conflicts of interest

All authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, L.M., Luat, D.T., Phung, V.B. et al. Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Arch Appl Mech 92, 163–182 (2022). https://doi.org/10.1007/s00419-021-02048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02048-3

Keywords

Navigation