Skip to main content
Log in

Dynamic characteristics of quasi-zero stiffness vibration isolation system for coupled dynamic vibration absorber

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the principle of dynamic vibration absorption, a quasi-zero stiffness (QZS) vibration isolation system for coupled a linear dynamic vibration absorber was designed. The dynamic model of the coupled system is established, and the frequency domain analytical solutions and the expression of force transmissibility are deduced by the averaging method. The effects of mass, stiffness and damping of the vibration absorber on the dynamic response and force transmissibility characteristics of the coupled system are analyzed numerically, and compared with an equivalent QZS vibration isolation system. The results reveal that the amplitude curve of the primary system shifts to the low-frequency range with the increase of mass ratio, the valley value appears and lower to \(2 \times 10^{ - 4}\) when the excitation frequency equals to the natural frequency of the absorber. Increase stiffness ratio can reduce the valley amplitude and the second peak amplitude of the primary system. The large the damping of the absorber, the lower the valley amplitude of the primary system can be acquired. As the mass ratio increases from 0.2 to 1, the initial isolation frequency of the coupled system decreases by 23.2%, which enlarges the bandwidth of the effective isolation frequency range. Large stiffness ratio or larger damping ratio of the absorber can improve the isolation performance in the frequency range near the second peak amplitude. Compared with the equivalent QZS isolation system, the coupled system possesses more excellent performance in the frequency domain near the valley amplitude and wider vibration isolation frequency bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Niu, F., Meng, L.S., Wu, W.J., Sun, J.G., Su, W.H., Meng, G., Rao, Z.S.: Recent advances in quasi-zero-stiffness vibration isolation systems. Appl. Mech. Mater. 397–400, 295–303 (2013)

    Article  Google Scholar 

  2. Platus, D.L.: Negative-stiffness-mechanism vibration isolation systems. Proc. SPIE Int. Soc. Opt. Eng. 3786, 44–54 (1999)

    Google Scholar 

  3. Winterflood, J., Barber, T.A., Blair, D.G.: Mathematical analysis of an Euler spring vibration isolator. Phys. Lett. A 300(2–3), 131–139 (2002)

    Article  Google Scholar 

  4. Winterflood, J., Blair, D.G., Slagmolen, B.: High performance vibration isolation using springs in Euler column buckling mode. Phys. Lett. A 300(2–3), 122–130 (2002)

    Article  Google Scholar 

  5. Virgin, L.N., Davis, R.B.: Vibration isolation using buckled struts. J. Sound Vib. 260(5), 965–973 (2003)

    Article  Google Scholar 

  6. Plaut, R.H., Sidbury, J.E., Virgin, L.N.: Analysis of buckled and pre-bent fixed-end columns used as vibration isolators. J. Sound Vib. 283(3–5), 1216–1228 (2005)

    Article  Google Scholar 

  7. Zhang, J.Z., Li, D., Dong, S., Chen, M.Z.: Study on Euler spring used in ultra-low frequency vertical vibration isolation system. J. Sound Vib. 26, 237–241 (2004)

    Google Scholar 

  8. Lee, C.M., Goverdovskiy, V.N., Temnikov, A.I.: Design of springs with “negative” stiffness to improve vehicle driver vibration isolation. J. Sound Vib. 302(4–5), 865–874 (2007)

    Article  Google Scholar 

  9. Zhou, N., Liu, K.: A tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010)

    Article  Google Scholar 

  10. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)

    Article  Google Scholar 

  11. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)

    Article  Google Scholar 

  12. Carrella, A., Brennan, M.J., Waters, T.P.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Article  Google Scholar 

  13. Nayfeh, A.H., Mook, D.T., Holmes, P.: Nonlinear oscillations. J. Appl. Mech. 47(3), 692 (1980)

    Article  Google Scholar 

  14. Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 1–13 (2016)

    Google Scholar 

  15. Xu, D.L., Zhang, Y.Y., Zhou, J.X.: On the analytical and experimental assessment of performance of a quasi-zero-stiffness isolator. J. Vib. Control 20(15), 2314–2325 (2014)

    Article  Google Scholar 

  16. Sun, X.T., Jing, X.J.: A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mech. Syst. Signal Process. 80, 166–188 (2016)

    Article  Google Scholar 

  17. Dong, G.X., Zhang, X.N., Luo, Y.J., Zhang, Y.H.: Investigation on the design of magnetic spring-beam vibration isolator with negative stiffness characteristic. Int. J. Appl. Electromagn. 52, 1321–1329 (2016)

    Article  Google Scholar 

  18. Sun, X.T., Jing, X.J., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333(9), 2404–2420 (2014)

    Article  Google Scholar 

  19. Jing, X.J., Lang, Z.Q., Billings, S.A., et al.: Frequency domain analysis for suppression of output vibration from periodic disturbance using nonlinearities. J. Sound Vib. 314(3–5), 536–557 (2008)

    Article  Google Scholar 

  20. Jing, X.J., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Nonlinear influence in the frequency domain: alternating series. Syst. Control Lett. 60(5), 295–309 (2011)

    Article  MathSciNet  Google Scholar 

  21. Liu, C.C., Jing, X.J., Daley, S., Li, F.M.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57(8), 55–80 (2015)

    Article  Google Scholar 

  22. Jing, X.J., Lang, Z.Q.: Frequency domain analysis and design of nonlinear systems based on Volterra series expansion: a parametric characteristic approach. In: Understanding Complex Systems (2015)

  23. Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58(3), 469–485 (2009)

    Article  MathSciNet  Google Scholar 

  24. Chai, K., Lou, J.J., Yang, Q.C.: Characteristic analysis of vibration isolation system based on high-static-low-dynamic stiffness. J. Vibroeng. 19(6), 4120–4137 (2017)

    Article  Google Scholar 

  25. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011)

    Article  Google Scholar 

  26. Zheng, Y.S., Zhang, X.N., Luo, Y.J., Yan, B., Ma, C.C.: Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016)

    Article  Google Scholar 

  27. Zheng, Y.S., Zhang, X.N., Luo, Y.J., Zhang, Y.H., Xie, S.L.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018)

    Article  Google Scholar 

  28. Dong, G.X., Zhang, X.N., Xie, S.L., Yan, B., Luo, Y.J.: Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Process. 86, 188–203 (2017)

    Article  Google Scholar 

  29. Shahadat, M.M.Z., Mizuno, T., Ishino, Y., Takasaki, M.: Cost-effective implementation of acceleration feedback to vibration system using negative stiffness. In: ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, Fort Lauderdale, Florida, USA (2012)

  30. Sun, X.T., Xu, J., Jing, X.J., Cheng, L.: Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. Int. J. Mech. Sci. 82, 32–40 (2014)

    Article  Google Scholar 

  31. Hua, Y.Y., Wong, W., Cheng, L.: Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J. Sound Vib. 421, 111–131 (2018)

    Article  Google Scholar 

  32. Anh, N.D., Nguyen, N.X.: Research on the design of non-traditional dynamic vibration absorber for damped structures under ground motion. J. Mech. Sci. Technol. 30(2), 593–602 (2016)

    Article  Google Scholar 

  33. Shen, Y.J., Chen, L., Yang, X.F., Shi, D.H., Yang, J.: Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. J. Sound Vib. 361, 148–158 (2016)

    Article  Google Scholar 

  34. Liu, M.C., Gu, F.H., Hua, J.H.: Integration design and optimization control of a dynamic vibration absorber for electric wheels with in-wheel motor. Energies 10(12), 2069 (2017)

    Article  Google Scholar 

  35. Sarah, G., Mohammad, H., Ali, H., Hassan, K., Wan, G.J.: Tremor reduction at the palm of a Parkinson’s patient using dynamic vibration absorber. Bioengineering 3(3), 18 (2016)

    Article  Google Scholar 

  36. Huang, X.C., Su, Z.W., Hua, H.X.: Application of a dynamic vibration absorber with negative stiffness for control of a marine shafting system. Ocean Eng. 155, 131–143 (2018)

    Article  Google Scholar 

  37. Acar, M.A., Yilmaz, C.: Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism. J. Sound Vib. 332(2), 231–245 (2013)

    Article  Google Scholar 

  38. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  39. Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)

    Article  Google Scholar 

  40. Meng, Q.G., Yang, X.F., Li, W., Sheng, L.C., Lu, E.: Research and analysis of quasi-zero-stiffness isolator with geometric nonlinear damping. Shock Vib. 2017(9), 1–9 (2017)

    Google Scholar 

  41. Yang, J., Xiong, Y.P., Xing, J.T.: Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci. 115–116, 238–252 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Beijing Municipal Natural Science Foundation (No. 2010118), Open Topic Funding Project of Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology (FM-201802), Top-notch Team Funding Project of Excellent Talents Plan of Xicheng District of Beijing, and 2020 Research and Innovation Plan for Graduate Students in Jiangsu Province (KYCX20_1927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfang Song.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ji, W., Xu, L. et al. Dynamic characteristics of quasi-zero stiffness vibration isolation system for coupled dynamic vibration absorber. Arch Appl Mech 91, 3799–3818 (2021). https://doi.org/10.1007/s00419-021-01978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01978-2

Keywords

Navigation