Skip to main content
Log in

MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, we studied the peristaltic motion of steady non-Newtonian nanofluid flow with heat transfer through a non-uniform inclined channel. The flow in this discussion obeys the power law model through a non-Darcy porous medium. Moreover, the effects of thermal radiation, heat generation, Ohmic dissipation and a uniform external magnetic field are taken in consideration. The governing equations that describe the velocity, temperature and nanoparticles concentration are simplified under the assumptions of long wave length and low-Reynolds number. These equations have been solved numerically by using Runge–Kutta–Merson method with the help of shooting and matching technique. The solutions are obtained as functions of the physical parameters entering the problem. The effects of these parameters on the obtained solutions are discussed and illustrated graphically through a set of figures. It is found that as Brownian motion parameter increases, the axial velocity decreases, whereas the nanoparticles concentration increases and it has a dual effect on the temperature distribution. Moreover, the axial velocity and temperature increase as Prandtl number increases, while the nanoparticles decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Choi, U.S.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME, New York (1995)

    Google Scholar 

  2. Garmroodi, M.R.D., Ahmadpour, A., Talati, F.: MHD mixed convection of nanofluids in the presence of multiple rotating cylinders in different configurations: a two-phase numerical study. Int. J. Mech. Sci. 150, 247–264 (2019)

    Article  Google Scholar 

  3. Wang, X.Q., Mujumdar, A.S.: A review on nanofluids-part 1: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)

    Article  Google Scholar 

  4. Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sust. Eng. Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  5. Eldabe, N.T.M., Abou-zeid, M.Y., Younis, Y.M.: Magnetohydrodynamic Peristaltic flow of Jeffry nanofluid with heat transfer through a porous medium in a vertical tube. Appl. Math. Inf. Sci. 11, 1097–1103 (2017)

    Article  MathSciNet  Google Scholar 

  6. Abou-zeid, M.: Effects of thermal-diffusion and viscous dissipation on peristaltic flow of micropolar non-Newtonian nanofluid: application of homotopy perturbation method. Results Phys. 6, 481–495 (2016)

    Article  Google Scholar 

  7. Abou-zeid, M.Y., Mohamed, M.A.A.: Homotopy perturbation method to creeping flow of non-Newtonian power-law nanofluid in a non-uniform inclined channel with peristalsis. Z. Naturforsch. A. 72, 899–907 (2017)

    Article  Google Scholar 

  8. Prakash, J., Siva, E.P., Tripathi, D., Kothandapani, M.: Nanofluids flow driven by peristaltic pumping in occurrence of magnetohydrodynamics and thermal radiation. Mater. Sci. Semicond. Process. 100, 290–300 (2019)

    Article  Google Scholar 

  9. Ellahi, R., Sait, S.M., Shehzad, N., Ayaz, Z.: A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int. J. Numer. Methods Heat Fluid Flow 30, 834–854 (2020)

    Article  Google Scholar 

  10. Akram, S., Razia, A., Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90, 1583–1603 (2020)

    Article  Google Scholar 

  11. Khan, L.A., Raza, M., Mir, N.A., Ellahi, R.: Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J. Therm. Anal. Calorim. 140, 879–890 (2020)

    Article  Google Scholar 

  12. Kataria, H.R., Patel, H.R.: Heat and mass transfer in magnetohydrodynamic (MHD) Casson fluid flow past over an oscillating vertical plate embedded in porous medium with ramped wall temperature. Propuls. Power Res. 7, 257–267 (2018)

    Article  Google Scholar 

  13. Kumar, N., Bansal, A., Gupta, R.: Shear rate and mass transfer coefficient in internal loop airlift reactors involving non-Newtonian fluids. Chem. Eng. Res. Des. 136, 315–323 (2018)

    Article  Google Scholar 

  14. Hayat, T., Yasmin, H., Alsaedi, A.: Convective heat transfer analysis for peristaltic flow of power-law fluid in a channel. J. Braz. Soc. Mech. Sci. Eng. 37, 463–477 (2015)

    Article  Google Scholar 

  15. Eldabe, N.T.M., El-Sayed, M.F., Ghaly, A.Y., Sayed, H.M.: Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity. Arch. Appl. Mech. 78, 599–624 (2008)

    Article  Google Scholar 

  16. Sayed, H.M., Aly, E.H., Vajravelu, K.: Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel. Alex. Eng. J. 55, 2209–2220 (2016)

    Article  Google Scholar 

  17. Ellahi, R., Zeeshan, R., Hussain, F., Abbas, T.: Thermally charged MHD Bi-phase flow coatings with non-Newtonian nanofluid and Hafnium particles along slippery walls. Coatings 9, 300 (2019)

    Article  Google Scholar 

  18. Reddappa, B., Parandhama, A., Sreenadh, S.: Peristaltic transport of conducting Williamson fluid in a porous channel. J. Math. Comput. Sci. 10, 277–288 (2020)

    Google Scholar 

  19. Hayat, T., Farooq, S., Ahmad, B., Alsaedi, A.: Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance. Int. J. Heat Mass Transf. 106, 244–252 (2017)

    Article  Google Scholar 

  20. Hayat, T., Ali, N.: On mechanism of peristaltic flows for power-law fluids. Physica A 371, 188–194 (2006)

    Article  Google Scholar 

  21. Rao, A.R., Mishra, M.: Peristaltic transport of a power-law fluid in a porous tube. J. Non Newton. Fluid Mech. 121, 163–174 (2004)

    Article  Google Scholar 

  22. Shaaban, A.A., Abou-zeid, M.Y.: Effects of heat and mass transfer on MHD peristaltic flow of a non-Newtonian fluid through a porous medium between Two Coaxial Cylinders. Math. Probl. Eng. 2013, 819683 (2013)

    Article  MathSciNet  Google Scholar 

  23. Chaube, M.K., Tripathi, D., Bég, O.A., Sharma, S., Pandey, V.S.: Peristaltic creeping flow of power law physiological fluids through a non uniform channel with slip effect. Appl. Bionics Biomech. 2015, ID 152802 (2015)

  24. https://tse1.mm.bing.net/th?id=OIP.W7kOvQzcyWhsVw3uoUU20AHaFK&pid=Api&P=0&w=258&h=181

  25. Mohamed, M.A., Abou-zeid, M.Y.: MHD peristaltic flow of micropolar Casson nanofluid through a porous medium between two co-axial tubes. J. Porous Media 22(9), 1079–1093 (2019)

    Article  Google Scholar 

  26. Hussain, T., Hussain, S., Hayat, T.: Impact of double stratification and magnetic field in mixed convective radiative flow of Maxwell nanofluid. J. Mol. Liq. 220, 870–878 (2016)

    Article  Google Scholar 

  27. Eldabe, N.T., Moatimid, G.M., Mohamed, M.A.A., Mohamed, Y.M.: Effects of Hallcurrents with heat and mass transfer on the peristaltic transport of a Casson fluid through a porous medium in a vertical circular cylinder. https://doi.org/10.2298/TSCI180222185E

  28. Ramesh, K., Devakar, M.: Effect of heat transfer on the peristaltic transport of a MHDsecond grade fluid through a porous medium in an inclined asymmetric channel. Chin. J. Phys. 55, 825–844 (2017)

    Article  Google Scholar 

  29. Shehzad, S.A., Abbasi, F.M., Hayat, T., Alsaadi, F.: MHD mixed convective peristaltic motion of nanofluid with joule heating and thermophoresis effects. PLOS ONE 9, e111417 (2014)

    Article  Google Scholar 

  30. Willemsen, M.J., Wienken, C.J., Braun, D., Baaske, P., Duhr, S.: Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–372 (2011)

    Article  Google Scholar 

  31. Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R.: Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737–758 (1980)

    Article  Google Scholar 

  32. Ali, M., Alam, M.S., Alam, M.M., Alim, M.A.: Radiation and thermal diffusion effect on a steady MHD free convection heat and mass transfer flow past an inclined stretching sheet with Hall current and heat generation. IOSR-JM 9, 33–45 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their valuable comments, which improved and enriched our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona A. A. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dabe, N.T.M., Abou-Zeid, M.Y., Mohamed, M.A.A. et al. MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel. Arch Appl Mech 91, 1067–1077 (2021). https://doi.org/10.1007/s00419-020-01810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01810-3

Keywords

Navigation