Skip to main content
Log in

Airfoil profile surface drag reduction characteristics based on the structure of the mantis shrimp abdominal segment

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

To reduce the drag of fluid on a surface, the parameterized structure of the mantis shrimp abdominal segment was analyzed to design the airfoil profile, and a calculation model was established based on the biological characteristics of the mantis shrimp. By using a numerical simulation method, the change in the viscous sublayer and drag reduction of the biological surface under different flow velocities and with different numbers of airfoil profiles was analyzed, and the mechanism of the drag reduction of the biological airfoil profile was revealed. The results show that the biological surface with airfoil profiles exhibited a better drag reduction effect. With an increase in airfoil profile numbers, the drag reduction rate first decreased and then increased. When the flow velocity was 10 m/s and the number of airfoil profiles was 5, the drag reduction rate exhibited the largest value of 15.33%. This result showed that the biological airfoil profile could affect the structure of the wall turbulent boundary layer and diminish the velocity gradient of the boundary layer, which finally changed the interaction pattern between the fluid and wall. In addition, the vortex cushioning effect was created to change the friction between the fluid and the wall into a rolling friction with a lower friction coefficient, thus reducing the shear stress on the wall, which achieved drag reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gu, Y.Q., Mou, J.G., Dai, D.S., Zheng, S.H., Jiang, L.F., Wu, D.H., Ren, Y., Liu, F.Q.: Characteristics on drag reduction of bionic jet surface based on earthworm’s back orifice jet. Acta Phys. Sin. 64(2), 024701 (2015)

    Google Scholar 

  2. Stenzel, V., Wilke, Y., Hage, W.: Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Prog. Org. Coat. 70(4), 224–229 (2011)

    Article  Google Scholar 

  3. Luo, Y.H., Wang, L.G., Green, L., Song, K.N., Wang, L., Smith, R.: Advances of drag-reducing surface technologies in turbulence based on boundary layer control. J. Hydrodyn. 27(4), 473–487 (2015)

    Article  Google Scholar 

  4. Rabey, P.K., Wynn, A., Buxton, O.R.H.: The kinematics of the reduced velocity gradient tensor in a fully developed turbulent free shear flow. J. Fluid Mech. 767, 627–658 (2015)

    Article  MathSciNet  Google Scholar 

  5. Gu, Y.Q., Yu, S.W., Mou, J.G., Wu, D.H., Zheng, S.H.: Research progress on the collaborative drag reduction effect of polymers and surfactants. Materials 13(2), 444 (2020)

    Article  Google Scholar 

  6. Gu, Y.Q., Xia, K., Wu, D.H., Mou, J.G., Zheng, S.H.: Technical characteristics and wear-resistant mechanism of nano coatings: a review. Coatings 10(3), 233 (2020)

    Article  Google Scholar 

  7. Song, X.W., Lin, P.Z., Liu, R., Zhou, P.: Skin friction reduction characteristics of variable ovoid non-smooth surfaces. J. Zhejiang Univ. Sci. A 18(1), 59–66 (2017)

    Article  Google Scholar 

  8. Gu, Y.Q., Yu, L.Z., Mou, J.G., Wu, D.H., Xu, M.S., Zhou, P.J., Ren, Y.: Research strategies to develop environmentally friendly marine antifouling coatings. Mar. Drugs 18(7), 371 (2020)

    Article  Google Scholar 

  9. van Nesselrooij, M., Veldhuis, L.L.M., van Oudheusden, B.W., Schrijer, F.F.J.: Drag reduction by means of dimpled surfaces in turbulent boundary layers. Exp. Fluids 57(9), 142 (2016)

    Article  Google Scholar 

  10. Tang, L., Zeng, Z.X., Wang, G., Liu, E.Y., Li, L.Y., Xue, Q.J.: Investigation on superhydrophilic surface with porous structure: drag reduction or drag increasing. Surf. Coat. Technol. 317, 54–63 (2017)

    Article  Google Scholar 

  11. Bai, J.X., Jiang, N., Zheng, X.B., Tang, Z.Q., Wang, K.J., Cui, X.T.: Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators. Chin. Phys. 27(7), 074701 (2018)

    Article  Google Scholar 

  12. Yang, S.Q., Li, S., Tian, H.P., Wang, Q.Y., Jiang, N.: Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets. Acta Mech. Sin. 32(2), 284–294 (2016)

    Article  Google Scholar 

  13. Mizunuma, H., Ohata, Y.: Influence of wall boundary conditions on sharkskin. J. Non Newton. Fluid Mech. 228, 55–63 (2016)

    Article  Google Scholar 

  14. Chen, H.W., Che, D., Zhang, X., Zhang, D.Y.: UV grafting process for synthetic drag reduction of biomimetic riblet surfaces. J. Appl. Polym. Sci. 132(33), 42303 (2015)

    Google Scholar 

  15. Ahmmed, K.M.T., Montagut, J., Kietzig, A.M.: Drag on superhydrophobic sharkskin inspired surface in a closed channel turbulent flow. Can. J. Chem. Eng. 95(10), 1934–1942 (2017)

    Article  Google Scholar 

  16. Stacey, M.T., Mead, K.S., Koehl, M.A.R.: Molecule capture by olfactory antennules: mantis shrimp. J. Math. Biol. 44(1), 1–30 (2002)

    Article  MathSciNet  Google Scholar 

  17. Rosario, M.V., Patek, S.N.: Multilevel analysis of elastic morphology: the mantis shrimp’s spring. J. Morphol. 276(9), 1123–1135 (2015)

    Article  Google Scholar 

  18. Zack, T.I., Claverie, T., Patek, S.N.: Elastic energy storage in the mantis shrimp’s fast predatory strike. J. Exp. Biol. 212(24), 4002–4009 (2009)

    Article  Google Scholar 

  19. Anderson, P.S.L., Smith, D.C., Patek, S.N.: Competing influences on morphological modularity in biomechanical systems: a case study in mantis shrimp. Evol. Dev. 18(3), 171–181 (2016)

    Article  Google Scholar 

  20. Yu, X.X., Wang, Y.W., Huang, C.G., Wei, Y.P., Fan, X., Du, T.Z., Wu, X.C.: Experiment and simulation on air layer drag reduction of high-speed underwater axisymmetric projectile. Eur. J. Mech. B. Fluids 52, 45–54 (2015)

    Article  Google Scholar 

  21. Gu, Y.Q., Zhao, G., Zheng, J.X., Li, Z.Y., Liu, W.B., Muhammad, F.K.: Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface. Ocean Eng. 81, 50–57 (2014)

    Article  Google Scholar 

  22. Khoshkalam, N., Najafi, A.F., Rahimian, M.H., Magagnato, F.: Numerical study on air-core vortex: analysis of generation mechanism. Arch. Appl. Mech. 90(1), 1–16 (2020)

    Article  Google Scholar 

  23. Li, J., Zheng, Y.X., Gong, P.H., Guan, C.T.: Numerical simulation and PIV experimental study of the effect of flow fields around tube artificial reefs. Ocean Eng. 134, 96–104 (2017)

    Article  Google Scholar 

  24. Kumar, A., Kim, M.H.: Effect of roughness width ratios in discrete multi V-rib with staggered rib roughness on overall thermal performance of solar air channel. Sol. Energy 119, 399–414 (2015)

    Article  Google Scholar 

  25. Tao, W.Q.: Numerical Heat Transfer, 2nd edn, pp. 337–375. Xi’an Jiaotong University Press, Xian (2002)

    Google Scholar 

  26. Li, M.X., Zhu, K.Q., Xie, Y., Cai, T.T., Yuan, N.Y., Ding, J.N.: Transient heat transfer characteristics of air-array-jet impingement with different nozzle arrangements on high-temperature flat plate in small jet-to-plate distance. J. Drain. Irrig. Mach. Eng. 38(3), 277–284 (2020)

    Google Scholar 

  27. Kang, B., Riedel, C.H., Tan, C.A.: Free vibration analysis of planar curved beams by wave propagation. J. Sound Vib. 260(1), 19–44 (2003)

    Article  Google Scholar 

  28. Lee, S.K., Mace, B.R., Brennan, M.J.: Wave propagation, reflection and transmission in curved beams. J. Sound Vib. 306(3–5), 636–656 (2007)

    Article  Google Scholar 

  29. Luo, Y.H., Yuan, L., Li, J.H., Wang, J.S.: Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications. Micron 79, 59–73 (2015)

    Article  Google Scholar 

  30. Zhang, J.X., Tian, H.P., Yao, Z.H., Hao, P.F., Jiang, N.: Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow. Exp. Fluids 56(9), 179 (2015)

    Article  Google Scholar 

  31. Pelz, P.F., Taubert, P.: Vortex-induced transient stall. Arch. Appl. Mech. 89(2), 307–312 (2019)

    Article  Google Scholar 

  32. Lagger, H.G., Breinlinger, T., Korvink, J.G., Moseler, M., Di Renzo, A., Di Maio, F., Bierwisch, C.: Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids. J. Non Newton. Fluid Mech. 218, 16–26 (2015)

    Article  MathSciNet  Google Scholar 

  33. Koh, S.R., Meysonnat, P., Statnikov, V., Meinke, M., Schröder, W.: Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput. Fluids 119, 261–275 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yan, H., Chen, L., Chai, L.P., Zhang, Y., Li, Q., Shi, H.X.: Orthogonal optimization of flow uniformity at exit section of elbow-inlet passages. J. Drain. Irrig. Mach. Eng. 37(11), 261–275 (2019)

    Google Scholar 

Download references

Acknowledgements

The research work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19E050003) and National Natural Science Foundation of China (Grant Nos. 51779226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Gu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Xia, K., Zhang, W. et al. Airfoil profile surface drag reduction characteristics based on the structure of the mantis shrimp abdominal segment. Arch Appl Mech 91, 919–932 (2021). https://doi.org/10.1007/s00419-020-01796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01796-y

Keywords

Navigation