Skip to main content
Log in

Nonlinear vibrations and chaotic phenomena of functionally graded material truncated conical shell subject to aerodynamic and in-plane loads under 1:2 internal resonance relation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the nonlinear dynamic responses of a functionally graded material (FGM) truncated conical shell under 1:2 internal resonance relation. The FGM truncated conical shell is subjected to the in-plane load and the aerodynamic load along the meridian direction. According to a power-law distribution, the material properties are assumed to be modified along the thickness direction smoothly and continuously and the material properties are temperature dependent. The aerodynamic load is obtained by the first-order piston theory with the curvature correction term. According to von Karman type nonlinear geometric relations, first-order shear deformation shell theory, Hamilton principle, the nonlinear equations of motion for the FGM truncated conical shell are established. Furthermore, the nonlinear equations of motion are reduced into a system of the ordinary differential equations by utilizing Galerkin procedure. The multiple scales method is used to obtain the averaged equations for the FGM truncated conical shell under the relations of 1:2 internal resonance and 1/2 subharmonic resonance. The frequency–response curves, time history diagrams, phase portraits, Poincare maps and bifurcation diagrams with different parameters are yielded by employing numerical calculations. The influences of exponent of volume fraction, Mach number, damping coefficient and in-plane load on the nonlinear resonance behaviors of the FGM truncated conical shell are investigated. The chaotic and periodic motions of the FGM truncated conical shell have been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Sofiyev, A.H.: The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Compos. Struct. 89, 56–366 (2009)

    Google Scholar 

  2. Sofiyev, A.H., Kuruoglu, N.: On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Compos. B Eng. 70, 122–130 (2015)

    Google Scholar 

  3. Yang, S.W., Hao, Y.X., Zhang, W., Li, S.B.: Nonlinear dynamic behavior of functionally graded truncated conical shell under complex loads. Int. J. Bifurc. Chaos 25, 1550025 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Yang, S.W., Zhang, W., Hao, Y.X., Niu, Y.: Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances. Thin Walled Struct. 142, 369–391 (2019)

    Google Scholar 

  5. Akbari, M., Kiani, Y., Eslami, M.R.: Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports. Acta Mech. 226, 897–915 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Ansari, R., Hasrati, E., Torabi, J.: Nonlinear vibration response of higher-order shear deformable FG-CNTRC conical shells. Compos. Struct. 222, 110906 (2019)

    Google Scholar 

  7. Chan, D.Q., Anh, V.T.T., Duc, N.D.: Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments. Acta Mech. 230, 157–178 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Chan, D.Q., Quan, T.Q., Kim, S.E.: Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments. Eur. J. Mech. A Solids 77, 103795 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Dai, Q.Y., Cao, Q.J., Chen, Y.S.: Frequency analysis of rotating truncated conical shells using the Haar wavelet method. Appl. Math. Model. 57, 603–613 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Rahmani, M., Mohammadi, Y., Kakavand, F.: Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings. Steel Compos. Struct. 32, 239–252 (2019)

    Google Scholar 

  11. Song, Z.Y., Cao, Q.J., Dai, Q.Y.: Free vibration of truncated conical shells with elastic boundary constraints and added mass. Int. J. Mech. Sci. 155, 286–294 (2019)

    Google Scholar 

  12. Hao, Y.X., Niu, N., Zhang, W., Li, S.B., Yao, M.H., Wang, A.W.: Supersonic flutter analysis of FGM shallow conical panel accounting for thermal effects. Meccanica 53, 95–109 (2018)

    MathSciNet  Google Scholar 

  13. Hao, Y.X., Niu, N., Zhang, W., Yao, M.H., Li, S.B.: Nonlinear vibrations of FGM circular conical panel under in-plane and transverse excitation. J. Vib. Eng. Technol. 6, 453–469 (2018)

    Google Scholar 

  14. Sofiyev, A.H.: Review of research on the vibration and buckling of the FGM conical shells. Compos. Struct. 211, 301–317 (2019)

    Google Scholar 

  15. Jooybar, N., Malekzadeh, P., Fiouz, A., Vaghefi, M.: Thermal effect on free vibration of functionally graded truncated conical shell panels. Thin Walled Struct. 103, 45–61 (2016)

    Google Scholar 

  16. Hao, Y.X., Yang, S.W., Zhang, W., Yao, M.H., Wang, A.W.: Flutter of high-dimension nonlinear system for a FGM truncated conical shell. Mech. Adv. Mater. Struct. 25, 47–61 (2018)

    Google Scholar 

  17. Izadi, M.H., Hosseini-Hashemi, S., Korayem, M.H.: Analytical and FEM solutions for free vibration of joined cross-ply laminated thick conical shells using shear deformation theory. Arch. Appl. Mech. 88, 2231–2246 (2018)

    Google Scholar 

  18. Zhao, Y.K., Shi, D.Y., Meng, H.: A unified spectro-geometric-Ritz solution for free vibration analysis of conical-cylindrical-spherical shell combination with arbitrary boundary conditions. Arch. Appl. Mech. 87, 961–988 (2017)

    Google Scholar 

  19. Deniz, A., Sofiyev, A.H.: The nonlinear dynamic buckling response of functionally graded truncated conical shells. J. Sound Vib. 332, 978–992 (2013)

    Google Scholar 

  20. Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F., Erdem, H.: The dynamic instability of FG orthotropic conical shells within the SDT. Steel Compos. Struct. 25, 581–591 (2017)

    Google Scholar 

  21. Hoa, L.K., Hoai, B.T.T., Chan, D.Q.: Nonlinear thermomechanical postbuckling analysis of ES-FGM truncated conical shells resting on elastic foundations. Mech. Adv. Mater. Struct. 26, 1089–1103 (2019)

    Google Scholar 

  22. Chan, D.Q., Nguyen, P.D., Quang, V.D.: Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load. Steel Compos. Struct. 31, 243–259 (2019)

    Google Scholar 

  23. Chan, D.Q., Long, V.D., Duc, N.D.: Nonlinear buckling and postbuckling of FGM shear-deformable truncated conical shells reinforced by FGM stiffeners. Mech. Compos. Mater. 54, 745–764 (2019)

    Google Scholar 

  24. Kiani, Y.: Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Compos. B Eng. 156, 128–137 (2019)

    Google Scholar 

  25. Jiao, P., Chen, Z.P., Li, Y.: Dynamic buckling analyses of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical shell under axial power-law time-varying displacement load. Compos. Struct. 220, 784–797 (2019)

    Google Scholar 

  26. Talebitooti, M.: Analytical and finite-element solutions for the buckling of composite sandwich conical shell with clamped ends under external pressure. Arch. Appl. Mech. 87, 59–73 (2017)

    Google Scholar 

  27. Dung, D.V., Chan, D.Q.: Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT. Compos. Struct. 159, 827–841 (2017)

    Google Scholar 

  28. Zhao, X., Liew, K.M.: An element-free analysis of mechanical and thermal buckling of functionally graded conical shell panels. Comput. Methods Appl. Mech. Eng. 86, 269–285 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Pasqua, M.F.D., Khakimova, R., Castro, S.G.P., Arbelo, M.A., Riccio, A.: Investigation on the geometric imperfections driven local buckling onset in composite conical shells. Appl. Compos. Mater. 23, 879–897 (2016)

    Google Scholar 

  30. Talebitooti, M.: Analytical and finite-element solutions for the buckling of composite sandwich conical shell with clamped ends under external pressure. Arch. Appl. Mech. 87, 1–15 (2016)

    Google Scholar 

  31. Maali, M., Showkati, H., Fatemi, S.M.: Investigation of the buckling behavior of conical shells under weld-induced imperfections. Thin Walled Struct. 57, 13–24 (2012)

    Google Scholar 

  32. Sofiyev, A.H., Zerin, Z., Kuruoglu, N.: Thermoplastic buckling of FGM conical shells under non-linear temperature rise in the framework of the shear deformation theory. Compos. B Eng. 108, 279–290 (2017)

    Google Scholar 

  33. Bich, D.H., Phuong, N.T., Tung, H.V.: Buckling of functionally graded conical panels under mechanical loads. Compos. Struct. 94, 1379–1384 (2012)

    Google Scholar 

  34. Zhang, Y., Shi, D.: An exact Fourier series method for vibration analysis of elastically connected laminated composite double-beam system with elastic constraints. Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1741750

    Article  Google Scholar 

  35. Shi, D.Y., He, D., Wang, Q., Ma, C., Shu, H.: Free vibration analysis of closed moderately thick cross-ply composite laminated cylindrical shell with arbitrary boundary conditions. Materials 13, 884 (2020)

    Google Scholar 

  36. He, D., Shi, D.Y., Wang, Q., Shuai, C.: Wave based method (WBM) for free vibration analysis of cross-ply composite laminated cylindrical shells with arbitrary boundaries. Compos. Struct. 213, 284–298 (2019)

    Google Scholar 

  37. Zhang, H., Shi, D., Zha, S., Wang, Q.: A modified Fourier solution for sound-vibration analysis for composite laminated thin sector plate-cavity coupled system. Compos. Struct. 207, 560–575 (2019)

    Google Scholar 

  38. Wang, Q., Shi, D., Liang, Q., Pang, F.: Free vibrations of composite laminated doubly-curved shells and panels of revolution with general elastic restraints. Appl. Math. Model. 46, 227–262 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Jin, G., Ma, X., Shi, S., Ye, T., Liu, Z.: A modified Fourier series solution for vibration analysis of truncated conical shells with general boundary conditions. Appl. Acoust. 85, 82–96 (2014)

    Google Scholar 

  40. Dai, L., Yang, T., Li, W.L., Du, J., Jin, G.: Dynamic analysis of circular cylindrical shells with general boundary condition using modified Fourier series method. J. Vib. Acoust. 134, 041004 (2012)

    Google Scholar 

  41. Zhang, W., Liu, T., Xi, A., Wang, Y.N.: Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J. Sound Vib. 423, 65–99 (2018)

    Google Scholar 

  42. Sun, Y., Zhang, W., Yao, M.H.: Multi-pulse chaotic dynamics of circular mesh antenna with 1:2 internal resonance. Int. J. Appl. Mech. 9, 1750060 (2017)

    Google Scholar 

  43. Zhang, W., Chen, J.E., Cao, D.X., Chen, L.H.: Nonlinear dynamic responses of a truss core sandwich plate. Compos. Struct. 108, 367–386 (2014)

    Google Scholar 

  44. Hao, Y.X., Zhang, W., Yang, J.: Nonlinear dynamics of cantilever FGM cylindrical shell under 1:2 internal resonance relations. Mech. Adv. Mater. Struct. 20, 819–833 (2013)

    Google Scholar 

  45. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. CU Press, New York (2008)

    MATH  Google Scholar 

  46. Mahmoudkhani, S., Haddadpour, H., Navazi, H.M.: Supersonic flutter prediction of functionally graded conical shells. Compos. Struct. 92, 377–386 (2010)

    Google Scholar 

  47. Sabri, F., Lakis, A.A.: Hybrid finite element method applied to supersonic flutter of an empty or partially liquid-filled truncated conical shell. J. Sound Vib. 239, 302–316 (2010)

    Google Scholar 

  48. Mehri, M., Asadi, H., Wang, Q.: On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow. Compos. Struct. 153, 938–951 (2016)

    Google Scholar 

  49. Praveen, G.N., Reddy, J.N.: Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)

    MATH  Google Scholar 

  50. Pradhan, S.C., Loya, C.T., Lama, K.Y., Reddy, J.N.: Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl. Acoust. 61, 111–129 (2000)

    Google Scholar 

  51. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, New York (2004)

    MATH  Google Scholar 

  52. Maleki, S., Tahani, M.: Non-linear analysis of fiber-reinforced open conical shell panels considering variation of thickness and fiber orientation under thermo-mechanical loadings. Compos. B Eng. 52, 245–261 (2013)

    Google Scholar 

  53. Patel, B.P., Singh, S., Nath, Y.: Postbuckling characteristics of angle-ply laminated truncated circular conical shells. Commun. Nonlinear Sci. Numer. Simul. 13, 1411–1430 (2008)

    MATH  Google Scholar 

  54. Navazi, H.M., Haddadpour, H.: Nonlinear aero-thermoelastic analysis of homogeneous and functionally graded plates in supersonic airflow using coupled models. Compos. Struct. 93, 2554–2565 (2011)

    Google Scholar 

  55. Shen, H.S.: Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. Int. J. Mech. Sci. 51, 372–383 (2009)

    Google Scholar 

  56. Efraim, E., Eisenberger, M.: Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. J. Sound Vib. 299, 720–738 (2007)

    Google Scholar 

  57. Noseir, A., Reddy, J.N.: A study of non-linear dynamic equations of higher-order deformation plate theories. Int. J. Non Linear Mech. 26, 233–249 (1991)

    Google Scholar 

  58. Bhimaraddi, A.: Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates. J. Sound Vib. 162, 457–470 (1993)

    MATH  Google Scholar 

  59. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  60. Liew, K.M., Ng, T.Y., Zhao, X.: Free vibration analysis of conical shells via the element-free kp-Ritz method. J. Sound Vib. 281, 627–645 (2005)

    Google Scholar 

  61. Kerboua, Y., Lakis, A.A., Hmila, M.: Vibration analysis of truncated conical shells subjected to flowing fluid. Appl. Math. Model. 34, 791–809 (2010)

    MathSciNet  MATH  Google Scholar 

  62. Najafov, A.M., Sofiyev, A.H.: The non-linear dynamics of FGM truncated conical shells surrounded by an elastic medium. Int. J. Mech. Sci. 66, 33–44 (2013)

    Google Scholar 

  63. Shen, H.S.: Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium. Compos. Struct. 94, 1144–1154 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of National Natural Science Foundation of China through Grant Nos. 11872127 and 11832002, Qin Xin Talents Cultivation Program, Beijing Information Science & Technology University QXTCP A201901. Project of High-level Innovative Team Building Plan for Beijing Municipal Colleges and Universities No. IDHT20180513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. X. Hao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Nonlinear equations in form of generalized displacements are listed, as follows

$$\begin{aligned}&A_{11} \frac{\partial ^{2}u_{0} }{\partial x^{2}}+\mathfrak {R}^{2}A_{66} \frac{\partial ^{2}u_{0} }{\partial \theta ^{2}}+\mathfrak {R}A_{11} \frac{\partial u_{0} }{\partial x}\sin \beta -\mathfrak {R}^{2}A_{22} u_{0} \cos ^{2}\beta +\mathfrak {R}\left( {A_{12} +A_{66} } \right) \frac{\partial ^{2}v_{0} }{\partial x\partial \theta }\nonumber \\&\quad -\mathfrak {R}^{2}\left( {A_{22} +A_{66} } \right) \frac{\partial v_{0} }{\partial \theta }\sin \beta +\mathfrak {R}^{2}A_{66} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial x}+\mathfrak {R}^{2}\left( {A_{12} +A_{66} } \right) \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial \theta }\nonumber \\&\quad +2\mathfrak {R}\left( {A_{11} -A_{12} } \right) \frac{\partial ^{2}w_{0} }{\partial x^{2}}\sin \beta -2\mathfrak {R}^{3}\left( {A_{12} -A_{22} } \right) \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\sin \beta +\mathfrak {R}A_{12} \frac{\partial w_{0} }{\partial x}\cos \beta \nonumber \\&\quad -\mathfrak {R}^{2}A_{22} w_{0} \sin \beta \cos \beta +B_{11} \frac{\partial ^{2}\varphi _{x} }{\partial x^{2}}+\mathfrak {R}^{2}B_{66} \frac{\partial ^{2}\varphi _{x} }{\partial \theta ^{2}}+\mathfrak {R}B_{11} \frac{\partial \varphi _{x} }{\partial x}\sin \beta -\mathfrak {R}^{2}B_{22} \varphi _{x} \sin ^{2}\beta \nonumber \\&\quad -\mathfrak {R}^{2}\left( {B_{22} +B_{66} } \right) \frac{\partial \varphi _{\theta } }{\partial \theta }\sin \beta +\mathfrak {R}\left( {B_{12} +B_{66} } \right) \frac{\partial ^{2}\varphi _{\theta } }{\partial x\partial \theta }+A_{11} \frac{\partial ^{2}w_{0} }{\partial x^{2}}\frac{\partial w_{0} }{\partial x} \nonumber \\&\quad +\mathfrak {R}N_{xx}^{T} \sin \beta -\mathfrak {R}N_{\theta \theta }^{T} \sin \beta =I_{0} \ddot{{u}}_{0} +I_{1} \ddot{{\varphi }}_{x} , \end{aligned}$$
(A1)
$$\begin{aligned}&\mathfrak {R}\left( {A_{12} +A_{66} } \right) \frac{\partial ^{2}u_{0} }{\partial x\partial \theta }+\mathfrak {R}^{2}\left( {A_{22} +A_{66} } \right) \frac{\partial u_{0} }{\partial \theta }\sin \beta +A_{66} \frac{\partial ^{2}v_{0} }{\partial x^{2}}+\mathfrak {R}^{2}A_{22} \frac{\partial ^{2}v_{0} }{\partial \theta ^{2}}\nonumber \\&\qquad -\mathfrak {R}^{2}\left( {KA_{44} \cos ^{2}\beta +A_{66} \sin ^{2}\beta } \right) v_{0} +\mathfrak {R}A_{66} \frac{\partial w_{0} }{\partial \theta }\frac{\partial ^{2}w_{0} }{\partial x^{2}}+\mathfrak {R}^{3}A_{22} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial \theta } \nonumber \\&\qquad +\mathfrak {R}\left( {A_{12} +A_{66} } \right) \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial x}+\mathfrak {R}^{2}A_{66} \frac{\partial w_{0} }{\partial \theta }\frac{\partial w_{0} }{\partial x}\sin \beta +\mathfrak {R}^{2}A_{22} \frac{\partial w_{0} }{\partial \theta }\cos \beta \nonumber \\&\qquad +\mathfrak {R}\left( {B_{12} +B_{66} } \right) \frac{\partial ^{2}\varphi _{x} }{\partial x\partial \theta }+\mathfrak {R}^{2}\left( {B_{22} +B_{66} } \right) \frac{\partial \varphi _{x} }{\partial \theta }\sin \beta +\mathfrak {R}B_{66} \frac{\partial \varphi _{\theta } }{\partial x}\sin \beta +\mathfrak {R}B_{22} \frac{\partial ^{2}\varphi _{\theta } }{\partial \theta ^{2}}\nonumber \\&\qquad +\mathfrak {R}A_{66} \frac{\partial v_{0} }{\partial x}\sin \beta +\mathfrak {R}^{2}KA_{44} \frac{\partial w_{0} }{\partial \theta }\cos \beta +\left( {\mathfrak {R}KA_{44} \cos \beta -\mathfrak {R}^{2}B_{66} \sin ^{2}\beta } \right) \varphi _{\theta }\nonumber \\&\quad =I_{0} \ddot{{v}}_{0} +I_{1} \ddot{{\varphi }}_{\theta } , \end{aligned}$$
(A2)
$$\begin{aligned}&2\mathfrak {R}^{2}B_{66} \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial \varphi _{x} }{\partial \theta }+0.5\mathfrak {R}^{2}A_{11} \left( {\frac{\partial w_{0} }{\partial x}} \right) ^{3}\sin \beta -\mathfrak {R}N_{\theta \theta }^{T} \cos \beta +\mathfrak {R}\left( {B_{11} +B_{22} } \right) \frac{\partial \varphi _{x} }{\partial x}\frac{\partial w_{0} }{\partial x}\nonumber \\&\quad -\mathfrak {R}^{2}A_{66} \frac{\partial v_{0} }{\partial \theta }\frac{\partial w_{0} }{\partial x}\sin \beta -\mathfrak {R}^{3}\left( {A_{12} +A_{66} } \right) \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial x}+2\mathfrak {R}^{2}\left( {A_{12} +2A_{66} } \right) \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial \theta }\frac{\partial w_{0} }{\partial x}\nonumber \\&\quad -\mathfrak {R}^{2}B_{66} \frac{\partial \varphi _{\theta } }{\partial x}\frac{\partial w_{0} }{\partial x}\sin \beta +A_{11} \frac{\partial ^{2}u_{0} }{\partial x^{2}}\frac{\partial w_{0} }{\partial x}+B_{11} \frac{\partial ^{2}\varphi _{x} }{\partial x^{2}}\frac{\partial w_{0} }{\partial x}+\mathfrak {R}\left( {A_{12} +A_{66} } \right) \frac{\partial ^{2}v_{0} }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial x}\nonumber \\&\quad +\mathfrak {R}\left( {B_{12} +B_{66} } \right) \frac{\partial ^{2}\varphi _{\theta } }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial x}+\mathfrak {R}^{2}A_{66} \frac{\partial ^{2}u_{0} }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial x}+\mathfrak {R}\left( {KA_{55} +N_{xx}^{T} } \right) \frac{\partial w_{0} }{\partial x}\sin \beta \nonumber \\&\quad +\frac{3}{2}A_{11} \frac{\partial ^{2}w_{0} }{\partial x^{2}}\left( {\frac{\partial w_{0} }{\partial x}} \right) ^{2}+0.5\mathfrak {R}^{2}\left( {A_{12} +2A_{66} } \right) \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\left( {\frac{\partial w_{0} }{\partial x}} \right) ^{2}+0.5\mathfrak {R}^{2}A_{12} \left( {\frac{\partial w_{0} }{\partial x}} \right) ^{2}\cos \beta \nonumber \\&\quad +\mathfrak {R}\left( {A_{11} +A_{12} } \right) \frac{\partial w_{0} }{\partial x}\frac{\partial u_{0} }{\partial x}\sin \beta +\mathfrak {R}^{2}A_{12} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\frac{\partial u_{0} }{\partial x}-A_{12} \frac{\partial u_{0} }{\partial x}\cos \beta +A_{11} \frac{\partial ^{2}w_{0} }{\partial x^{2}}\frac{\partial u_{0} }{\partial x}\nonumber \\&2\mathfrak {R}A_{66} \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial v_{0} }{\partial x}-\mathfrak {R}^{2}A_{66} \frac{\partial w_{0} }{\partial \theta }\frac{\partial v_{0} }{\partial x}+\mathfrak {R}A_{12} \frac{\partial ^{2}w_{0} }{\partial x^{2}}w_{0} \cos \beta +\mathfrak {R}^{3}A_{22} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}w_{0} \cos \beta \nonumber \\&\quad -\mathfrak {R}^{2}A_{22} w_{0} \cos \beta +\mathfrak {R}B_{12} \frac{\partial ^{2}w_{0} }{\partial x^{2}}\varphi _{x} \sin \beta +\mathfrak {R}^{3}B_{22} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\varphi _{x} \sin \beta \nonumber \\&\quad +\left( {\mathfrak {R}KA_{55} -\mathfrak {R}^{2}B_{22} \cos \beta } \right) \varphi _{x} \sin \beta +\mathfrak {R}^{3}B_{66} \frac{\partial w_{0} }{\partial \theta }\varphi _{\theta } \sin ^{2}\beta -\mathfrak {R}^{2}B_{66} \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\varphi _{\theta } \sin \beta \nonumber \\&\quad +\mathfrak {R}^{3}A_{22} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}u_{0} \sin \beta -\mathfrak {R}^{3}A_{22} u_{0} \sin \beta \cos \beta +\mathfrak {R}^{2}A_{12} \frac{\partial ^{2}w_{0} }{\partial x^{2}}u_{0} \sin \beta \nonumber \\&\quad +\mathfrak {R}^{3}A_{66} \frac{\partial w_{0} }{\partial \theta }v_{0} \sin ^{2}\beta -2\mathfrak {R}^{2}A_{66} \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }v_{0} \sin \beta +\mathfrak {R}^{2}\left( {KA_{44} +N_{\theta \theta }^{T} } \right) \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\nonumber \\&\quad +\mathfrak {R}^{3}\left( {B_{22} -B_{66} } \right) \frac{\partial \varphi _{x} }{\partial \theta }\frac{\partial w_{0} }{\partial \theta }+\mathfrak {R}A_{66} \frac{\partial ^{2}v_{0} }{\partial x^{2}}\frac{\partial w_{0} }{\partial \theta }+\mathfrak {R}B_{66} \frac{\partial ^{2}\varphi _{\theta } }{\partial x^{2}}\frac{\partial w_{0} }{\partial \theta }\nonumber \\&\quad +\mathfrak {R}^{2}\left( {B_{12} +B_{66} } \right) \frac{\partial ^{2}\varphi _{x} }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial \theta }+\mathfrak {R}^{3}A_{66} \frac{\partial ^{2}v_{0} }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial \theta }+\mathfrak {R}^{3}B_{22} \frac{\partial ^{2}\varphi _{\theta } }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial \theta }\nonumber \\&\quad +\left( {KA_{55} +N_{xx}^{T} -p\cos \Omega t} \right) \frac{\partial ^{2}w_{0} }{\partial x^{2}}+0.5\mathfrak {R}\left( {A_{12} +2A_{66} } \right) \frac{\partial ^{2}w_{0} }{\partial x^{2}}\left( {\frac{\partial w_{0} }{\partial \theta }} \right) ^{2}\nonumber \\&\quad +0.5\mathfrak {R}^{3}A_{22} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\left( {\frac{\partial w_{0} }{\partial \theta }} \right) ^{2}+\mathfrak {R}A_{12} \frac{\partial ^{2}w_{0} }{\partial x^{2}}\frac{\partial v_{0} }{\partial \theta }+\mathfrak {R}^{3}A_{22} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\frac{\partial v_{0} }{\partial \theta }+KA_{55} \frac{\partial \varphi _{x} }{\partial x}\nonumber \\&\quad -\mathfrak {R}^{2}\left( {KA_{44} +A_{22} } \right) \frac{\partial v_{0} }{\partial \theta }\cos \beta +B_{11} \frac{\partial ^{2}w_{0} }{\partial x^{2}}\frac{\partial \varphi _{x} }{\partial x}-\mathfrak {R}B_{12} \frac{\partial \varphi _{x} }{\partial x}\cos \beta +\mathfrak {R}^{2}B_{12} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\frac{\partial \varphi _{x} }{\partial x}\nonumber \\&\quad +2\mathfrak {R}B_{66} \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial \varphi _{\theta } }{\partial x}-\mathfrak {R}^{2}B_{66} \frac{\partial w_{0} }{\partial \theta }\frac{\partial \varphi _{\theta } }{\partial x}\sin \beta +\mathfrak {R}^{3}\left( {A_{22} -A_{66} } \right) \frac{\partial w_{0} }{\partial \theta }\frac{\partial u_{0} }{\partial \theta }\sin \beta \nonumber \\&\quad +\mathfrak {R}^{2}B_{66} \frac{\partial ^{2}\varphi _{x} }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial x}+\mathfrak {R}^{2}\left( {A_{12} +A_{66} } \right) \frac{\partial ^{2}u_{0} }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial \theta }+0.5\mathfrak {R}^{3}A_{22} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\cos \beta \nonumber \\&\quad +2\mathfrak {R}^{3}A_{66} \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial u_{0} }{\partial \theta }+P_\mathrm{a} -\kappa \dot{{w}}_{0} =I_{0} \ddot{{w}}_{0} , \end{aligned}$$
(A3)
$$\begin{aligned}&B_{11} \frac{\partial ^{2}u_{0} }{\partial x^{2}}+\mathfrak {R}^{2}B_{66} \frac{\partial ^{2}u_{0} }{\partial \theta ^{2}}+\mathfrak {R}B_{11} \frac{\partial u_{0} }{\partial x}\sin \beta -\mathfrak {R}^{2}B_{22} u_{0} \sin ^{2}\beta +\mathfrak {R}\left( {B_{12} +B_{66} } \right) \frac{\partial ^{2}v_{0} }{\partial x\partial \theta }\nonumber \\&\quad -\mathfrak {R}^{2}\left( {B_{22} +B_{66} } \right) \frac{\partial v_{0} }{\partial \theta }\sin \beta +0.5\mathfrak {R}^{2}\left( {B_{11} -B_{12} } \right) \frac{\partial ^{2}w_{0} }{\partial x^{2}}\sin \beta -\mathfrak {R}^{2}B_{22} w_{0} \sin \beta \cos \beta \nonumber \\&\quad +\mathfrak {R}B_{12} \frac{\partial w_{0} }{\partial x}\cos \beta +B_{11} \frac{\partial ^{2}w_{0} }{\partial x^{2}}\frac{\partial w_{0} }{\partial x}+\mathfrak {R}^{2}B_{66} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial x}-KA_{55} \frac{\partial w_{0} }{\partial x}\nonumber \\&\quad -0.5\mathfrak {R}^{2}\left( {B_{12} +B_{22} } \right) \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\sin \beta +\mathfrak {R}^{2}\left( {B_{12} +B_{66} } \right) \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial \theta }-\left( {KA_{55} +\frac{1}{R^{2}}D_{22} } \right) \varphi _{x}\nonumber \\&\quad +\mathfrak {R}D_{11} \frac{\partial \varphi _{x} }{\partial x}\sin \beta +\mathfrak {R}^{2}D_{66} \frac{\partial ^{2}\varphi _{x} }{\partial \theta ^{2}}+D_{11} \frac{\partial ^{2}\upphi _{x} }{\partial x^{2}}+\mathfrak {R}\left( {D_{12} +D_{66} } \right) \frac{\partial ^{2}\varphi _{x} }{\partial x\partial \theta }\nonumber \\&\quad -\mathfrak {R}^{2}\left( {D_{22} +D_{66} } \right) \frac{\partial \varphi _{\theta } }{\partial \theta }\sin \beta +\mathfrak {R}M_{xx}^{T} \sin \beta -\mathfrak {R}M_{\theta \theta }^{T} \sin \beta =I_{1} \ddot{{u}}_{0} +I_{2} \ddot{{\varphi }}_{x} , \end{aligned}$$
(A4)
$$\begin{aligned}&\mathfrak {R}\left( {B_{12} +B_{66} } \right) \frac{\partial ^{2}u_{0} }{\partial x\partial \theta }+\mathfrak {R}^{2}\left( {B_{22} +B_{66} } \right) \frac{\partial u_{0} }{\partial \theta }\sin \beta +B_{66} \frac{\partial ^{2}v_{0} }{\partial x^{2}}+\mathfrak {R}^{2}B_{22} \frac{\partial ^{2}v_{0} }{\partial \theta ^{2}}\nonumber \\&\qquad +\left( {\mathfrak {R}KA_{44} \cos \beta -\mathfrak {R}^{2}B_{66} \sin ^{2}\beta } \right) v_{0} +\mathfrak {R}^{2}B_{66} \frac{\partial w_{0} }{\partial x}\frac{\partial w_{0} }{\partial \theta }\sin \beta \nonumber \\&\qquad +\left( {\mathfrak {R}^{2}B_{22} \cos \beta -\mathfrak {R}KA_{44} } \right) \frac{\partial w_{0} }{\partial \theta }+\mathfrak {R}^{3}B_{22} \frac{\partial ^{2}w_{0} }{\partial \theta ^{2}}\frac{\partial w_{0} }{\partial \theta }+\mathfrak {R}B_{66} \frac{\partial ^{2}w_{0} }{\partial x^{2}}\frac{\partial w_{0} }{\partial \theta }\nonumber \\&\qquad +\mathfrak {R}^{2}\left( {D_{22} +D_{66} } \right) \frac{\partial \varphi _{\theta } }{\partial \theta }+\mathfrak {R}^{2}D_{22} \frac{\partial ^{2}\varphi _{\theta } }{\partial \theta ^{2}}+\mathfrak {R}D_{66} \frac{\partial \varphi _{\theta } }{\partial x}-\left( {KA_{44} +\mathfrak {R}^{2}D_{66} \sin ^{2}\beta } \right) \varphi _{\theta }\nonumber \\&\qquad +\mathfrak {R}B_{66} \frac{\partial v_{0} }{\partial x}\sin \beta +\mathfrak {R}\left( {B_{12} +B_{66} } \right) \frac{\partial ^{2}w_{0} }{\partial x\partial \theta }\frac{\partial w_{0} }{\partial x}+\mathfrak {R}\left( {D_{12} +D_{66} } \right) \frac{\partial ^{2}\varphi _{x} }{\partial x\partial \theta }+D_{66} \frac{\partial ^{2}\varphi _{\theta } }{\partial x^{2}}\nonumber \\&\quad =I_{1} \ddot{{v}}_{0} +I_{2} \ddot{{\varphi }}_{\theta } . \end{aligned}$$
(A5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S.W., Hao, Y.X., Yang, L. et al. Nonlinear vibrations and chaotic phenomena of functionally graded material truncated conical shell subject to aerodynamic and in-plane loads under 1:2 internal resonance relation. Arch Appl Mech 91, 883–917 (2021). https://doi.org/10.1007/s00419-020-01794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01794-0

Keywords

Navigation