Skip to main content
Log in

Multibody modeling and nonlinear control of the pantograph/catenary system

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a closed-chain multibody model of a pantograph/catenary system is developed and used for the optimal design of a nonlinear controller based on an open-loop control architecture. The goal of the nonlinear controller is the reduction of the contact force arising from the pantograph/catenary interaction and, at the same time, the suppression of the mechanical vibrations of the pantograph mechanism. The analytical formulation employed in this paper for describing the nonlinear dynamics of the pantograph/catenary multibody system considers a Lagrangian approach and is based on a redundant set of generalized coordinates. The contact forces generated by the pantograph/catenary interaction are modeled in this work employing an elastic force element collocated between the pantograph pan-head and a moving support. The external support follows a prescribed motion law that simulates the periodic deployment of the catenary system. On the other hand, in this investigation, the algebraic constraints arising from the closed-loop topology of the pantograph multibody system are enforced employing a method based on the Udwadia–Kalaba equations recently developed in the field of analytical dynamics. Furthermore, the problem of the determination of an effective feedforward controller for reducing the pantograph/catenary contact force is formulated in this work as a nonlinear optimal control problem. For this purpose, the solution of the control optimization problem is carried out by using an adjoint-based computational procedure. Numerical simulations demonstrate the effectiveness of the nonlinear controller obtained in this investigation for the pantograph/catenary multibody system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Poetsch, G., Evans, J., Meisinger, R., Kortum, W., Baldauf, W., Veitl, A., Wallaschek, J.: Pantograph/catenary dynamics and control. J. Veh. Syst. Dyn. 28(2–3), 159–195 (1997)

    Article  Google Scholar 

  2. Seo, J.H., Kim, S.W., Jung, I.H., Park, T.W., Mok, J.Y., Kim, Y.G., Chai, J.B.: Dynamic analysis of a pantograph/catenary system using absolute nodal coordinates. J. Veh. Syst. Dyn. 44(8), 615–630 (2006)

    Article  Google Scholar 

  3. Seo, J.H., Sugiyama, H., Shabana, A.A.: Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. J. Nonlinear Dyn. 42(2), 199–215 (2005)

    Article  MATH  Google Scholar 

  4. Ambrosio, J., Pombo, J., Pereira, M., Antunes, P., Mosca, A.: A computational procedure for the dynamic analysis of the catenary–pantograph interaction in high-speed trains. J. Theor. Appl. Mech. 50(3), 681–699 (2012)

    Google Scholar 

  5. Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230(4), 307–328 (2016)

    Google Scholar 

  6. Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 1–12 (2017)

    Google Scholar 

  7. Pombo, J., Ambrosio, J., Pereira, M., Rauter, F., Collina, A., Facchinetti, A.: Influence of the aerodynamic forces on the pantograph–catenary system for high-speed trains. J. Veh. Syst. Dyn. 47(11), 1327–1347 (2009)

    Article  Google Scholar 

  8. Bruni, S., Bucca, G., Collina, A., Facchinetti, A.: Numerical and hardware-in-the-loop tools for the design of very high speed pantograph–catenary systems. J. Comput. Nonlinear Dyn. 7(4), 041013 (2012)

    Article  Google Scholar 

  9. Ambrosio, J., Pombo, J., Pereira, M.: Optimization of high-speed railway pantographs for improving pantograph–catenary contact. Theor. Appl. Mech. Lett. 3(1), 013006 (2013)

    Article  Google Scholar 

  10. Balestrino, A., Bruno, O., Landi, A., Sani, L.: Innovative solutions for overhead catenary–pantograph system: wire actuated control and observed contact force. J. Veh. Syst. Dyn. 33(2), 69–89 (2000)

    Article  Google Scholar 

  11. Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  12. Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 230(1), 69–84 (2016)

    Google Scholar 

  13. Orzechowski, G., Fraczek, J.: Integration of the equations of motion of multibody systems using absolute nodal coordinate formulation. Acta Mech. Autom. 6, 75–83 (2012)

    Google Scholar 

  14. Barbagallo, R., Sequenzia, G., Oliveri, S.M., Cammarata, A.: Dynamics of a high-performance motorcycle by an advanced multibody/control co-simulation. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 230(2), 207–221 (2016)

    Google Scholar 

  15. Cammarata, A., Angeles, J., Sinatra, R.: Kinetostatic and inertial conditioning of the McGill Schonflies-motion generator. Adv. Mech. Eng. 2, 186203 (2010)

    Article  Google Scholar 

  16. Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)

    Article  Google Scholar 

  17. Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)

    Article  Google Scholar 

  18. Flores, P., Ambrósio, J., Claro, J.P., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies, vol. 34. Springer (2008). https://doi.org/10.1007/978-3-540-74361-3

  19. Nikravesh, P.E.: An overview of several formulations for multibody dynamics. In: Product Engineering, pp. 189–226. Springer, Dordrecht (2004). https://doi.org/10.1007/1-4020-2933-0_13

  20. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haghshenas-Jaryani, M., Bowling, A.: A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems. Multibody Syst. Dyn. 30(2), 185–197 (2013)

    Article  MathSciNet  Google Scholar 

  22. Pappalardo, C.M.: Modelling rigid multibody systems using natural absolute coordinates. J. Mech. Eng. Ind. Des. 3(1), 24–38 (2014)

    MathSciNet  Google Scholar 

  23. Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, W., Tian, Q., Hu, H.: Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH. Nonlinear Dyn. 84(4), 2447–2465 (2016)

    Article  MathSciNet  Google Scholar 

  25. Senatore, A., Pisaturo, M., Sharifzadeh, M.: Real time identification of automotive dry clutch frictional characteristics using trust region methods. In: AIMETA 2017—XXIII Conference of the Italian Association of Theoretical and Applied Mechanics, 4–7 September 2017, Salerno, Italy (2017)

  26. Sharifzadeh, M., Farnam, A., Senatore, A., Timpone, F., Akbari, A.: Delay-dependent criteria for robust dynamic stability control of articulated vehicles. In International Conference on Robotics in Alpe-Adria Danube Region, vol. 49, pp. 424–432. Springer, Cham (2017, June). https://doi.org/10.1007/978-3-319-61276-8_46

  27. Palomba, I., Richiedei, D., Trevisani, A.: Kinematic state estimation for rigid-link multibody systems by means of nonlinear constraint equations. Multibody Syst. Dyn. 40(1), 1–22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Palomba, I., Richiedei, D., Trevisani, A.: Two-stage approach to state and force estimation in rigid-link multibody systems. Multibody Syst. Dyn. 39(1–2), 115–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sands, T.: Nonlinear-adaptive mathematical system identification. Computation 5(4), 47 (2017)

    Article  MathSciNet  Google Scholar 

  30. Strano, S., Terzo, M.: A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60, 715–726 (2015)

    Article  Google Scholar 

  31. Strano, S., Terzo, M.: Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter. Mech. Syst. Signal Process. 75, 576–588 (2016)

    Article  Google Scholar 

  32. Hermosilla, C., Vinter, R., Zidani, H.: Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints. Syst. Control Lett. 109, 30–36 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, F.Y., Zhang, H., Liu, D.: Adaptive dynamic programming: an introduction. IEEE Comput. Intell. Mag. 4(2), 39–47 (2009)

    Article  Google Scholar 

  34. Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, New York (2012)

    Book  MATH  Google Scholar 

  35. Rao, D.V., Sinha, N.K.: A sliding mode controller for aircraft simulated entry into spin. Aerosp. Sci. Technol. 28(1), 154–163 (2013)

    Article  Google Scholar 

  36. Khalil, H.K.: Nonlinear Control. Prentice Hall, Englewood Cliffs (2014)

    Google Scholar 

  37. Bruni, S., Bucca, G., Carnevale, M., Collina, A., Facchinetti, A.: Pantograph–catenary interaction: recent achievements and future research challenges. Int. J. Rail Transp. 6(2), 57–82 (2017)

    Article  Google Scholar 

  38. Chen, G., Yang, Y., Yang, Y.: Prediction of dynamic characteristics of a pantograph-catenary system using the displacement compatibility. J. Vibroeng. 19(7), 5405–5420 (2017)

    Article  MathSciNet  Google Scholar 

  39. Navik, P., Ronnquist, A., Stichel, S.: Variation in predicting pantograph–catenary interaction contact forces, numerical simulations and field measurements. Veh. Syst. Dyn. 55(9), 1265–1282 (2017)

    Article  Google Scholar 

  40. Navik, P., Ronnquist, A., Stichel, S.: Identification of system damping in railway catenary wire systems from full-scale measurements. Eng. Struct. 113, 71–78 (2016)

    Article  Google Scholar 

  41. Song, Y., Ouyang, H., Liu, Z., Mei, G., Wang, H., Lu, X.: Active control of contact force for high-speed railway pantograph–catenary based on multi-body pantograph model. Mech. Mach. Theory 115, 35–59 (2017)

    Article  Google Scholar 

  42. Lu, X., Liu, Z., Zhang, J., Wang, H., Song, Y., Duan, F.: Prior-information-based finite-frequency H-infinity control for active double pantograph in high-speed railway. IEEE Trans. Veh. Technol. 66(10), 8723–8733 (2017)

    Article  Google Scholar 

  43. Bautista, A., Montesinos, J., Pintado, P.: Dynamic interaction between pantograph and rigid overhead lines using a coupled FEM-multibody procedure. Mech. Mach. Theory 97, 100–111 (2016)

    Article  Google Scholar 

  44. Lee, J.H., Park, T.W., Oh, H.K., Kim, Y.G.: Analysis of dynamic interaction between catenary and pantograph with experimental verification and performance evaluation in new high-speed line. Veh. Syst. Dyn. 53(8), 1117–1134 (2015)

    Article  Google Scholar 

  45. Ambrósio, J., Pombo, J., Rauter, F., Pereira, M.: A Memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation. In: Bottasso, C.L. (ed.) Multibody Dynamics. Computational Methods in Applied Sciences, vol. 12. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  46. Massat, J.P., Laurent, C., Bianchi, J.P., Balmes, E.: Pantograph–catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Veh. Syst. Dyn. 52, 338–354 (2014)

    Article  Google Scholar 

  47. Lee, J.S., Choi, S., Kim, S.S., Kim, Y.G., Kim, S.W., Park, C.: Track condition monitoring by in-service trains: a comparison between axle-box and bogie accelerometers. In: Proceeding of the 5th IET Conference on Railway Condition Monitoring and Non-Destructive Testing (RCM 2011) (2011)

  48. Seo, S.I., Cho, Y.H., Mok, J.Y., Park, C.S.: A study on the measurement of contact force of pantograph on high speed train. J. Mech. Sci. Technol. 20(10), 1548–1556 (2006)

    Article  Google Scholar 

  49. Lee, J.H., Park, T.W.: Development and verification of a dynamic analysis model for the current-collection performance of high-speed trains using the absolute nodal coordinate formulation. Trans. Korean Soc. Mech. Eng. A 36(3), 339–346 (2012)

    Article  Google Scholar 

  50. Song, Y., Liu, Z., Duan, F., Lu, X., Wang, H.: Study on wind-induced vibration behavior of railway catenary in spatial stochastic wind field based on nonlinear finite element procedure. J. Vib. Acoust. 140(1), 011010 (2018)

    Article  Google Scholar 

  51. Song, Y., Liu, Z., Ouyang, H., Wang, H., Lu, X.: Sliding mode control with PD sliding surface for high-speed railway pantograph–catenary contact force under strong stochastic wind field. Shock Vib. 2017, 4895321 (2017)

    Google Scholar 

  52. Duan, F. C., Liu, Z. G., Song, Y.: Study on the current collection of high-speed pantograph–catenary system considering static wind perturbation and friction coupling. In: 35th IEEE Chinese Control Conference (CCC), pp. 10236–10241 (2016)

  53. Schirrer, A., Aschauer, G., Talic, E., Kozek, M., Jakubek, S.: Catenary emulation for hardware-in-the-loop pantograph testing with a model predictive energy-conserving control algorithm. Mechatronics 41, 17–28 (2017)

    Article  Google Scholar 

  54. Shi, G., Chen, Z., Guo, F., Liu, J., Zhao, C.: Control of pantograph–catenary contact load with parameter uncertainties based on fuzzy backstepping. Chin. J. Sci. Instrum. 38(2), 471–479 (2017)

    Google Scholar 

  55. Ren, Z., Lin, D., Wang, Y., Zhang, G.: Research on semi-active control strategy of high speed railway pantograph–catenary system based on model predictive control. J. Syst. Simul. 29(5), 1086–1092 (2017)

    Google Scholar 

  56. Guo, F., Wang, H., Wang, Z., Xue, Y., Guo, F., Wang, A.: Study on dynamic contact force of pantograph–catenary system. J. Liaoning Tech. Univ. 36(6), 640–644 (2017)

    Article  Google Scholar 

  57. Wang, H., Liu, Z., Nunez, A., Dollevoet, R.: Identification of the catenary structure wavelength using pantograph head acceleration measurements. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2017, pp. 1–6 (2017)

  58. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  59. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall Inc., Englewood Cliffs (1988)

    Google Scholar 

  60. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  61. Meirovitch, L.: Methods of Analytical Dynamics. Courier Dover Publications, New York (2010)

    MATH  Google Scholar 

  62. Flannery, M.R.: D’Alembert–Lagrange analytical dynamics for nonholonomic systems. J. Math. Phys. 52(3), 032705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Flannery, M.R.: The enigma of nonholonomic constraints. Am. J. Phys. 73(3), 265–272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. Shabana, A.A.: Non-linear dynamics of multibody systems with generalized and non-generalized coordinates In Virtual Nonlinear Multibody Systems, pp. 1–16. Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-010-0203-5

    Book  MATH  Google Scholar 

  65. Flannery, M.R.: The elusive D’Alembert–Lagrange dynamics of nonholonomic systems. Am. J. Phys. 79(9), 932–944 (2011)

    Article  Google Scholar 

  66. Ardema, M.D.: Analytical Dynamics. Kluwer Academic/Plenum Publishers, New York (2005)

    Book  MATH  Google Scholar 

  67. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  68. Eich-Soellner, E., Fuhrer, C.: Numerical Methods in Multibody Dynamics. Teubner, Stuttgart (1998)

    Book  MATH  Google Scholar 

  69. Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 213(1–2), 111–129 (2010)

    Article  MATH  Google Scholar 

  70. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. Pennestri, E., Valentini, P.P., De Falco, D.: An application of the Udwadia–Kalaba dynamic formulation to flexible multibody systems. J. Frankl. Inst. 347(1), 173–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2097), 2341–2363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  74. Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-Linear Mech. 37(6), 1079–1090 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  75. Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Dover Publications, New York (2012)

    Google Scholar 

  76. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  77. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  78. Kim, J., Bewley, T.R.: A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. Bewley, T.R., Luchini, P., Pralits, J.: Methods for solution of large optimal control problems that bypass open-loop model reduction. Meccanica 51(12), 2997–3014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhong, W.: Duality System in Applied Mechanics and Optimal Control. Springer, Berlin (2004)

    MATH  Google Scholar 

  81. Troutman, J.L.: Variational Calculus and Optimal Control: Optimization with Elementary Convexity. Springer, New York (1995)

    MATH  Google Scholar 

  82. Stengel, R.F.: Optimal Control and Estimation. Courier Dover Publications, New York (2012)

    MATH  Google Scholar 

  83. Bement, M.T., Bewley, T.R.: Excitation design for damage detection using iterative adjoint-based optimization—part 1: method development. Mech. Syst. Signal Process. 23(3), 783–793 (2009)

    Article  Google Scholar 

  84. Bement, M.T., Bewley, T.R.: Excitation design for damage detection using iterative adjoint-based optimization—part 2: experimental demonstration. Mech. Syst. Signal Process. 23(3), 794–803 (2009)

    Article  Google Scholar 

  85. Press, W.H.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  86. Snyman, J.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer, Berlin (2005)

    MATH  Google Scholar 

  87. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2013)

    MATH  Google Scholar 

  88. Wright, S.J., Nocedal, J.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  89. De Falco, D., Pennestri, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)

    Article  Google Scholar 

  90. Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)

    Article  Google Scholar 

  91. De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 579 (2017)

    Google Scholar 

  92. De Simone, M.C., Guida, D.: On the development of a low cost device for retrofitting tracked vehicles for autonomous navigation. In: Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), 4–7 September 2017, Salerno, Italy (2017)

  93. Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016)

    Google Scholar 

  94. De Simone, M. C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 4483–4491 (2015)

  95. Ruggiero, A., Affatato, S., Merola, M., De Simone, M. C.: FEM analysis of metal on UHMWPE total hip prosthesis during normal walking cycle. In: Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), Salerno, Italy; 4–7 September 2017 (2017)

  96. De Simone, M.C., Rivera, Z.B., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2), 18 (2018)

    Article  Google Scholar 

  97. Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45, 578–584 (2017)

    Article  Google Scholar 

  98. De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)

    Article  Google Scholar 

  99. De Simone, M.C., Guida, D.: Identification and control of a unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D Mech. Eng. 80(1), 141–154 (2018)

    Google Scholar 

  100. De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)

    Article  Google Scholar 

Download references

Author contributions

This research paper was principally developed by Carmine Maria Pappalardo. A great support was provided by Marco Claudio De Simone. The detailed review carried out by Domenico Guida considerably improved the quality of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pappalardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this appendix, the mathematical descriptions of the geometric configurations of the components that form the pantograph multibody model are reported.

1.1 A.1 Crank geometric configuration

$$\begin{aligned} {{\mathbf{A}}_2}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\cos ({\theta _2}(t))}&{}\quad { - \sin ({\theta _2}(t))}&{}\quad 0\\ {\sin ({\theta _2}(t))}&{}\quad {\cos ({\theta _2}(t))}&{}\quad 0\\ 0&{}\quad 0&{}\quad 1 \end{array}} \right] \end{aligned}$$
(94)
$$\begin{aligned} {{\mathbf{R}}_2}(t)= & {} \left[ {\begin{array}{*{20}{l}} {2{L_1}\cos ({\theta _1}(t)) + {L_2}\cos ({\theta _2}(t))}\\ {2{L_1}\sin ({\theta _1}(t)) + {L_2}\sin ({\theta _2}(t))}\\ 0 \end{array}} \right] \end{aligned}$$
(95)
$$\begin{aligned} {{\mathbf{r}}_2}({P_2},t)= & {} \left[ {\begin{array}{*{20}{l}} {2{L_1}\cos ({\theta _1}(t)) + \left( {{L_2} + {{{\bar{x}}}_2}({P_2})} \right) \cos ({\theta _2}(t))}\\ {2{L_1}\sin ({\theta _1}(t)) + \left( {{L_2} + {{{\bar{x}}}_2}({P_2})} \right) \sin ({\theta _2}(t))}\\ 0 \end{array}} \right] \end{aligned}$$
(96)
$$\begin{aligned} {{\varvec{{\bar{\omega }} }}_2}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ {{{{\dot{\theta }} }_2}(t)} \end{array}} \right] \end{aligned}$$
(97)
$$\begin{aligned} {{\mathbf{J}}_2}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{L_1}\sin ({\theta _1}(t))}&{}\quad { - {L_2}\sin ({\theta _2}(t))}&{}\quad 0&{}\quad 0\\ {2{L_1}\cos ({\theta _1}(t))}&{}\quad {{L_2}\cos ({\theta _2}(t))}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(98)
$$\begin{aligned} {{\mathbf{L}}_2}({P_2},t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{L_1}\sin ({\theta _1}(t))}&{}\quad { - \left( {{L_2} + {{{\bar{x}}}_2}({P_2})} \right) \sin ({\theta _2}(t))}&{}\quad 0&{}\quad 0\\ {2{L_1}\cos ({\theta _1}(t))}&{}\quad {\left( {{L_2} + {{{\bar{x}}}_2}({P_2})} \right) \cos ({\theta _2}(t))}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(99)
$$\begin{aligned} {{{{\bar{\varvec{\Omega }}} }}_2}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0 \end{array}} \right] . \end{aligned}$$
(100)

1.2 A.2 Lower arm geometric configuration

$$\begin{aligned} {{\mathbf{A}}_3}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\cos ({\theta _3}(t))}&{}\quad { - \sin ({\theta _3}(t))}&{}\quad 0\\ {\sin ({\theta _3}(t))}&{}\quad {\cos ({\theta _3}(t))}&{}\quad 0\\ 0&{}\quad 0&{}\quad 1 \end{array}} \right] \end{aligned}$$
(101)
$$\begin{aligned} {{\mathbf{R}}_3}(t)= & {} \left[ {\begin{array}{*{20}{l}} {2{L_1}\cos ({\theta _1}(t)) + 2{L_2}\cos ({\theta _2}(t)) + {L_3}\cos ({\theta _3}(t))}\\ {2{L_1}\sin ({\theta _1}(t)) + 2{L_2}\sin ({\theta _2}(t)) + {L_3}\sin ({\theta _3}(t))}\\ 0 \end{array}} \right] \end{aligned}$$
(102)
$$\begin{aligned} {{\mathbf{r}}_3}({P_3},t)= & {} \left[ {\begin{array}{*{20}{l}} {2{L_1}\cos ({\theta _1}(t)) + 2{L_2}\cos ({\theta _2}(t)) + \left( {{L_3} + {{{\bar{x}}}_3}({P_3})} \right) \cos ({\theta _3}(t))}\\ {2{L_1}\sin ({\theta _1}(t)) + 2{L_2}\sin ({\theta _2}(t)) + \left( {{L_3} + {{{\bar{x}}}_3}({P_3})} \right) \sin ({\theta _3}(t))}\\ 0 \end{array}} \right] \end{aligned}$$
(103)
$$\begin{aligned} {{\varvec{{\bar{\omega }} }}_3}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ {{{{\dot{\theta }} }_3}(t)} \end{array}} \right] \end{aligned}$$
(104)
$$\begin{aligned} {{\mathbf{J}}_3}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{L_1}\sin ({\theta _1}(t))}&{}\quad { - 2{L_2}\sin ({\theta _2}(t))}&{}\quad { - {L_3}\sin ({\theta _3}(t))}&{}\quad 0\\ {2{L_1}\cos ({\theta _1}(t))}&{}\quad {2{L_2}\cos ({\theta _2}(t))}&{}\quad {{L_3}\cos ({\theta _3}(t))}&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(105)
$$\begin{aligned} {{\mathbf{L}}_3}({P_3},t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{L_1}\sin ({\theta _1}(t))}&{}\quad { - 2{L_2}\sin ({\theta _2}(t))}&{}\quad { - \left( {{L_3} + {{{\bar{x}}}_3}({P_3})} \right) \sin ({\theta _3}(t))}&{}\quad 0\\ {2{L_1}\cos ({\theta _1}(t))}&{}\quad {2{L_2}\cos ({\theta _2}(t))}&{}\quad {\left( {{L_3} + {{{\bar{x}}}_3}({P_3})} \right) \cos ({\theta _3}(t))}&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(106)
$$\begin{aligned} {{{{\bar{\varvec{\Omega }}} }}_3}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0 \end{array}} \right] . \end{aligned}$$
(107)

1.3 A.3 Upper arm geometric configuration

$$\begin{aligned} {{\mathbf{A}}_4}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\cos ({\theta _2}(t) - \beta )}&{}\quad { - \sin ({\theta _2}(t) - \beta )}&{}\quad 0\\ {\sin ({\theta _2}(t) - \beta )}&{}\quad {\cos ({\theta _2}(t) - \beta )}&{}\quad 0\\ 0&{}\quad 0&{}\quad 1 \end{array}} \right] \end{aligned}$$
(108)
$$\begin{aligned} {{\mathbf{R}}_4}(t)= & {} \left[ {\begin{array}{*{20}{l}} {2{L_1}\cos ({\theta _1}(t)) + 2{L_2}\cos ({\theta _2}(t)) + {L_4}\cos ({\theta _2}(t) - \beta )}\\ {2{L_1}\sin ({\theta _1}(t)) + 2{L_2}\sin ({\theta _2}(t)) + {L_4}\sin ({\theta _2}(t) - \beta )}\\ 0 \end{array}} \right] \end{aligned}$$
(109)
$$\begin{aligned} {{\mathbf{r}}_4}({P_4},t)= & {} \left[ {\begin{array}{*{20}{l}} {2{L_1}\cos ({\theta _1}(t)) + 2{L_2}\cos ({\theta _2}(t)) + \left( {{L_4} + {{{\bar{x}}}_4}({P_4})} \right) \cos ({\theta _2}(t) - \beta )}\\ {2{L_1}\sin ({\theta _1}(t)) + 2{L_2}\sin ({\theta _2}(t)) + \left( {{L_4} + {{{\bar{x}}}_4}({P_4})} \right) \sin ({\theta _2}(t) - \beta )}\\ 0 \end{array}} \right] \end{aligned}$$
(110)
$$\begin{aligned} {{\varvec{{\bar{\omega }} }}_4}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ {{{{\dot{\theta }} }_2}(t)} \end{array}} \right] \end{aligned}$$
(111)
$$\begin{aligned} {{\mathbf{J}}_4}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{L_1}\sin ({\theta _1}(t))}&{}\quad { - 2{L_2}\sin ({\theta _2}(t)) - {L_4}\sin ({\theta _2}(t) - \beta )}&{}\quad 0&{}\quad 0\\ {2{L_1}\cos ({\theta _1}(t))}&{}\quad {2{L_2}\cos ({\theta _2}(t)) + {L_4}\cos ({\theta _2}(t) - \beta )}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(112)
$$\begin{aligned} {{\mathbf{L}}_4}({P_4},t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{L_1}\sin ({\theta _1}(t))}&{}\quad { - 2{L_2}\sin ({\theta _2}(t)) - \left( {{L_4} + {{{\bar{x}}}_4}({P_4})} \right) \sin ({\theta _2}(t) - \beta )}&{}\quad 0&{}\quad 0\\ {2{L_1}\cos ({\theta _1}(t))}&{}\quad {2{L_2}\cos ({\theta _2}(t)) + \left( {{L_4} + {{{\bar{x}}}_4}({P_4})} \right) \cos ({\theta _2}(t) - \beta )}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(113)
$$\begin{aligned} {{{{\bar{\varvec{\Omega }}} }}_4}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0 \end{array}} \right] . \end{aligned}$$
(114)

1.4 A.4 Pan-head geometric configuration

$$\begin{aligned} {{\mathbf{u}}_5}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0\\ {x(t)}\\ 0 \end{array}} \right] \end{aligned}$$
(115)
$$\begin{aligned} {{\mathbf{R}}_5}(t)= & {} \left[ {\begin{array}{*{20}{l}} {2{L_1}\cos ({\theta _1}(t)) + 2{L_2}\cos ({\theta _2}(t)) + 2{L_4}\cos ({\theta _2}(t) - \beta )}\\ {2{L_1}\sin ({\theta _1}(t)) + 2{L_2}\sin ({\theta _2}(t)) + 2{L_4}\sin ({\theta _2}(t) - \beta ) + x(t)}\\ 0 \end{array}} \right] \end{aligned}$$
(116)
$$\begin{aligned} {{\mathbf{J}}_5}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{L_1}\sin ({\theta _1}(t))}&{}\quad { - 2{L_2}\sin ({\theta _2}(t)) - {L_4}\sin ({\theta _2}(t) - \beta )}&{}\quad 0&{}\quad 0\\ {2{L_1}\cos ({\theta _1}(t))}&{}\quad {2{L_2}\cos ({\theta _2}(t)) + {L_4}\cos ({\theta _2}(t) - \beta )}&{}\quad 0&{}\quad 1\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] . \end{aligned}$$
(117)

Appendix B

In this appendix, the mathematical descriptions of the inertia terms and of the generalized forces of the components that form the pantograph multibody model are reported.

1.1 B.1 Crank inertia terms and generalized forces

$$\begin{aligned} {{\mathbf{M}}_2}(t)= & {} \left[ {\begin{array}{*{20}{l}} {4{m_2}L_1^2}&{}\quad {2{L_1}{L_2}{m_2}\cos ({\theta _1}(t) - {\theta _2}(t))}&{}\quad 0&{}\quad 0\\ {2{L_1}{L_2}{m_2}\cos ({\theta _1}(t) - {\theta _2}(t))}&{}\quad {\frac{4}{3}{m_2}L_2^2}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(118)
$$\begin{aligned} {{\mathbf{C}}_2}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0&{}{\begin{array}{*{20}{l}} {2{L_1}{L_2}{m_2}{{{\dot{\theta }} }_2}(t)}\\ {\cdot \sin ({\theta _1}(t) - {\theta _2}(t))} \end{array}}&{}\quad 0&{}\quad 0\\ {\begin{array}{*{20}{l}} { - 2{L_1}{L_2}{m_2}{{{\dot{\theta }} }_1}(t)}\\ {\cdot \sin ({\theta _1}(t) - {\theta _2}(t))} \end{array}}&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(119)
$$\begin{aligned} {{\mathbf{Q}}_{{\mathrm{v}},2}}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{L_1}{L_2}{m_2}\sin ({\theta _1}(t) - {\theta _2}(t)){\dot{\theta }} _2^2(t)}\\ {2{L_1}{L_2}{m_2}\sin ({\theta _1}(t) - {\theta _2}(t)){\dot{\theta }} _1^2(t)}\\ 0\\ 0 \end{array}} \right] \end{aligned}$$
(120)
$$\begin{aligned} {{\mathbf{Q}}_{g,2}}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{m_2}g{L_1}\cos ({\theta _1}(t))}\\ { - {m_2}g{L_2}\cos ({\theta _2}(t))}\\ 0\\ 0 \end{array}} \right] . \end{aligned}$$
(121)

1.2 B.2 Lower arm inertia terms and generalized forces

$$\begin{aligned} {{\mathbf{M}}_3}(t)= & {} \left[ {\begin{array}{*{20}{l}} {4{m_3}L_1^2}&{}\quad {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_3}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t))} \end{array}}&{}\quad {\begin{array}{*{20}{l}} {2{L_1}{L_3}{m_3}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _3}(t))} \end{array}}&{}\quad 0\\ {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_3}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t))} \end{array}}&{}\quad {4{m_3}L_2^2}&{}\quad {\begin{array}{*{20}{l}} {2{L_2}{L_3}{m_3}}\\ {\quad \cdot \cos ({\theta _2}(t) - {\theta _3}(t))} \end{array}}&{}\quad 0\\ {\begin{array}{*{20}{l}} {2{L_1}{L_3}{m_3}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _3}(t))} \end{array}}&{}\quad {\begin{array}{*{20}{l}} {2{L_2}{L_3}{m_3}}\\ {\quad \cdot \cos ({\theta _2}(t) - {\theta _3}(t))} \end{array}}&{}\quad {\frac{4}{3}{m_3}L_3^2}&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(122)
$$\begin{aligned} {{\mathbf{C}}_3}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0&{}\quad {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_3}{{{\dot{\theta }} }_2}(t)}\\ {\quad \cdot \sin ({\theta _1}(t) - {\theta _2}(t))} \end{array}}&{}\quad {\begin{array}{*{20}{l}} {2{L_1}{L_3}{m_3}{{{\dot{\theta }} }_3}(t)}\\ {\quad \cdot \sin ({\theta _1}(t) - {\theta _3}(t))} \end{array}}&{}\quad 0\\ {\begin{array}{*{20}{l}} { - 4{L_1}{L_2}{m_3}{{{\dot{\theta }} }_1}(t)}\\ {\quad \cdot \sin ({\theta _1}(t) - {\theta _2}(t))} \end{array}}&{}\quad 0&{}\quad {\begin{array}{*{20}{l}} {2{L_2}{L_3}{m_3}{{{\dot{\theta }} }_3}(t)}\\ {\quad \cdot \sin ({\theta _2}(t) - {\theta _3}(t))} \end{array}}&{}\quad 0\\ {\begin{array}{*{20}{l}} { - 2{L_1}{L_3}{m_3}{{{\dot{\theta }} }_1}(t)}\\ {\quad \cdot \sin ({\theta _1}(t) - {\theta _3}(t))} \end{array}}&{}\quad {\begin{array}{*{20}{l}} { - 2{L_2}{L_3}{m_3}{{{\dot{\theta }} }_2}(t)}\\ {\quad \cdot \sin ({\theta _2}(t) - {\theta _3}(t))} \end{array}}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(123)
$$\begin{aligned} {{\mathbf{Q}}_{{\mathrm{v}},3}}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 4{L_1}{L_2}{m_3}\sin ({\theta _1}(t) - {\theta _2}(t)){\dot{\theta }} _2^2(t) - 2{L_1}{L_3}{m_3}\sin ({\theta _1}(t) - {\theta _3}(t)){\dot{\theta }} _3^2(t)}\\ {4{L_1}{L_2}{m_3}\sin ({\theta _1}(t) - {\theta _2}(t)){\dot{\theta }} _1^2(t) - 2{L_2}{L_3}{m_3}\sin ({\theta _2}(t) - {\theta _3}(t)){\dot{\theta }} _3^2(t)}\\ {2{L_1}{L_3}{m_3}\sin ({\theta _1}(t) - {\theta _3}(t)){\dot{\theta }} _1^2(t) + 2{L_2}{L_3}{m_3}\sin ({\theta _2}(t) - {\theta _3}(t)){\dot{\theta }} _2^2(t)}\\ 0 \end{array}} \right] \end{aligned}$$
(124)
$$\begin{aligned} {{\mathbf{Q}}_{g,3}}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{m_3}g{L_1}\cos ({\theta _1}(t))}\\ { - 2{m_3}g{L_2}\cos ({\theta _2}(t))}\\ { - {m_3}g{L_3}\cos ({\theta _3}(t))}\\ 0 \end{array}} \right] . \end{aligned}$$
(125)

1.3 B.3 Upper arm inertia terms and generalized forces

$$\begin{aligned} {{\mathbf{M}}_4}(t)= & {} \left[ {\begin{array}{*{20}{l}} {4{m_4}L_1^2}&{}\quad {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_4}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t)) }\\ { + 2{L_1}{L_4}{m_4}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t) + \beta )} \end{array}}&{}\quad 0&{}\quad 0\\ {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_4}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t)) }\\ { + 2{L_1}{L_4}{m_4}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t) + \beta )} \end{array}}&{}\quad {\begin{array}{*{20}{l}} {\frac{4}{3}{m_4}L_4^2 + 4{m_4}L_2^2 }\\ { + 4{m_4}{L_2}{L_4}\cos (\beta )} \end{array}}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(126)
$$\begin{aligned} {{\mathbf{C}}_4}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0&{}\quad {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_4}{{{\dot{\theta }} }_2}(t)}\\ {\quad \cdot \sin ({\theta _1}(t) - {\theta _2}(t)) }\\ {+2{L_1}{L_4}{m_4}{{{\dot{\theta }} }_2}(t)}\\ {\quad \cdot \sin ({\theta _1}(t) - {\theta _2}(t) + \beta )} \end{array}}&{}\quad 0&{}\quad 0\\ {\begin{array}{*{20}{l}} { - 4{L_1}{L_2}{m_4}{{{\dot{\theta }} }_1}(t)}\\ {\quad \cdot \sin ({\theta _1}(t) - {\theta _2}(t)) }\\ { - 2{L_1}{L_4}{m_4}{{{\dot{\theta }} }_1}(t)}\\ {\sin ({\theta _1}(t) - {\theta _2}(t) + \beta )} \end{array}}&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0 \end{array}} \right] \end{aligned}$$
(127)
$$\begin{aligned} {{\mathbf{Q}}_{{\mathrm{v}},4}}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\begin{array}{*{20}{l}} { - 4{L_1}{L_2}{m_4}\sin ({\theta _1}(t) - {\theta _2}(t)){\dot{\theta }} _2^2(t) }\\ { - 2{L_1}{L_4}{m_4}\sin ({\theta _1}(t) - {\theta _2}(t) + \beta ){\dot{\theta }} _2^2(t)} \end{array}}\\ {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_4}\sin ({\theta _1}(t) - {\theta _2}(t)){\dot{\theta }} _1^2(t) }\\ { + 2{L_1}{L_4}{m_4}\sin ({\theta _1}(t) - {\theta _2}(t) + \beta ){\dot{\theta }} _1^2(t)} \end{array}}\\ 0\\ 0 \end{array}} \right] \end{aligned}$$
(128)
$$\begin{aligned} {{\mathbf{Q}}_{g,4}}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{m_4}g{L_1}\cos ({\theta _1}(t))}\\ { - 2{m_4}g{L_2}\cos ({\theta _2}(t)) - {m_4}g{L_4}\cos (\beta - {\theta _2}(t))}\\ 0\\ 0 \end{array}} \right] . \end{aligned}$$
(129)

1.4 B.4 Pan-head inertia terms and generalized forces

$$\begin{aligned} {{\mathbf{M}}_5}(t)= & {} \left[ {\begin{array}{*{20}{l}} {4{m_5}L_1^2}&{}\quad {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_5}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t)) }\\ { + 4{L_1}{L_4}{m_4}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t) + \beta )} \end{array}}&{}\quad 0&{}\quad {\begin{array}{*{20}{l}} {2{L_1}{m_5}}\\ {\quad \cdot \cos ({\theta _1}(t))} \end{array}}\\ {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_5}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t)) }\\ { + 4{L_1}{L_4}{m_4}}\\ {\quad \cdot \cos ({\theta _1}(t) - {\theta _2}(t) + \beta )} \end{array}}&{}\quad {\begin{array}{*{20}{l}} {4{m_5}L_2^2 + 4{m_5}L_4^2 }\\ { + 8{m_5}{L_2}{L_4}\cos (\beta )} \end{array}}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad {\begin{array}{*{20}{l}} {2{m_5}{L_2}}\\ {\quad \cdot \cos ({\theta _2}(t)) }\\ { + 2{m_5}{L_4}}\\ {\quad \cdot \cos (\beta - {\theta _2}(t))} \end{array}}\\ {\begin{array}{*{20}{l}} {2{L_1}{m_5}}\\ {\quad \cdot \cos ({\theta _1}(t))} \end{array}}&{}\quad {\begin{array}{*{20}{l}} {2{m_5}{L_2}}\\ {\quad \cdot \cos ({\theta _2}(t)) }\\ { + 2{m_5}{L_4}}\\ {\quad \cdot \cos (\beta - {\theta _2}(t))} \end{array}}&\quad 0&\quad {{m_5}} \end{array}} \right] \end{aligned}$$
(130)
$$\begin{aligned} {{\mathbf{C}}_5}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0&{}\quad {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_5}{{{\dot{\theta }} }_2}(t)}\\ {\cdot \sin ({\theta _1}(t) - {\theta _2}(t)) }\\ { + 4{L_1}{L_4}{m_5}{{{\dot{\theta }} }_2}(t)}\\ {\quad \cdot \sin ({\theta _1}(t) - {\theta _2}(t) + \beta )} \end{array}}&{}\quad 0&{}\quad 0\\ {\begin{array}{*{20}{l}} { - 4{L_1}{L_2}{m_5}{{{\dot{\theta }} }_1}(t)}\\ {\cdot \sin ({\theta _1}(t) - {\theta _2}(t)) }\\ { - 4{L_1}{L_4}{m_5}{{{\dot{\theta }} }_1}(t)}\\ {\quad \quad \cdot \sin ({\theta _1}(t) - {\theta _2}(t) + \beta )} \end{array}}&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ { - 2{L_1}{m_5}\sin ({\theta _1}(t)){{{\dot{\theta }} }_1}(t)}&{}\quad {\begin{array}{*{20}{l}} {2{L_4}{m_5}{{{\dot{\theta }} }_2}(t)}\\ {\quad \cdot \sin (\beta - {\theta _2}(t)) }\\ { - 2{L_2}{m_5}{{{\dot{\theta }} }_2}(t)}\\ {\quad \cdot \sin ({\theta _2}(t))} \end{array}}&\quad 0&\quad 0 \end{array}} \right] \end{aligned}$$
(131)
$$\begin{aligned} {{\mathbf{Q}}_{{\mathrm{v}},5}}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\begin{array}{*{20}{l}} { - 4{L_1}{L_2}{m_5}\sin ({\theta _1}(t) - {\theta _2}(t)){\dot{\theta }} _2^2(t) }\\ { - 4{L_1}{L_4}{m_5}\sin ({\theta _1}(t) - {\theta _2}(t) + \beta ){\dot{\theta }} _2^2(t)} \end{array}}\\ {\begin{array}{*{20}{l}} {4{L_1}{L_2}{m_5}\sin ({\theta _1}(t) - {\theta _2}(t)){\dot{\theta }} _1^2(t) }\\ { + 4{L_1}{L_4}{m_5}\sin ({\theta _1}(t) - {\theta _2}(t) + \beta ){\dot{\theta }} _1^2(t)} \end{array}}\\ 0\\ {\begin{array}{*{20}{l}} {2{L_1}{m_5}\sin ({\theta _1}(t)){\dot{\theta }} _1^2(t) }\\ { - 2{L_4}{m_5}\sin (\beta - {\theta _2}(t)){\dot{\theta }} _2^2(t) }\\ { + 2{L_2}{m_5}\sin ({\theta _2}(t)){\dot{\theta }} _2^2(t)} \end{array}} \end{array}} \right] \end{aligned}$$
(132)
$$\begin{aligned} {{\mathbf{Q}}_{g,5}}(t)= & {} \left[ {\begin{array}{*{20}{l}} { - 2{m_5}g{L_1}\cos ({\theta _1}(t))}\\ { - 2{m_5}g{L_2}\cos ({\theta _2}(t)) - 2{m_5}g{L_4}\cos (\beta - {\theta _2}(t))}\\ 0\\ { - {m_5}g} \end{array}} \right] \end{aligned}$$
(133)

1.5 B.5 Pneumatic actuator generalized force

$$\begin{aligned} {{\mathbf{Q}}_{k,1}}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\begin{array}{*{20}{l}} {\left( {{p_1} - {k_1}\left( {2{L_1}\sin ({\theta _1}(t)) + 2{L_2}\sin ({\theta _2}(t))} \right) } \right) 2{L_1}\cos ({\theta _1}(t)) }\\ { - {k_1}\left( {\left( {{L_3} + {L_E}} \right) \sin ({\theta _3}(t)) - {H_E}} \right) 2{L_1}\cos ({\theta _1}(t))} \end{array}}\\ {\begin{array}{*{20}{l}} {\left( {{p_1} - {k_1}\left( {2{L_1}\sin ({\theta _1}(t)) + 2{L_2}\sin ({\theta _2}(t))} \right) } \right) 2{L_2}\cos ({\theta _2}(t)) }\\ { - {k_1}\left( {\left( {{L_3} + {L_E}} \right) \sin ({\theta _3}(t)) - {H_E}} \right) 2{L_2}\cos ({\theta _2}(t))} \end{array}}\\ {\begin{array}{*{20}{l}} {\left( {{p_1} - {k_1}\left( {2{L_1}\sin ({\theta _1}(t)) + 2{L_2}\sin ({\theta _2}(t))} \right) } \right) \left( {{L_3} + {L_E}} \right) \cos ({\theta _3}(t)) }\\ { - {k_1}\left( {\left( {{L_3} + {L_E}} \right) \sin ({\theta _3}(t)) - {H_E}} \right) \left( {{L_3} + {L_E}} \right) \cos ({\theta _3}(t))} \end{array}}\\ 0 \end{array}} \right] \end{aligned}$$
(134)
$$\begin{aligned} {{\mathbf{Q}}_{r,1}}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\begin{array}{*{20}{l}} { - {r_1}\left( {2{L_1}\cos ({\theta _1}(t)){{{\dot{\theta }} }_1}(t)} \right) 2{L_1}\cos ({\theta _1}(t)) }\\ { - {r_1}\left( {2{L_2}\cos ({\theta _2}(t)){{{\dot{\theta }} }_2}(t)} \right) 2{L_1}\cos ({\theta _1}(t)) }\\ { - {r_1}\left( {{L_3} + {L_E}} \right) \cos ({\theta _3}(t)){{\dot{\theta }}_3}(t)2{L_1}\cos ({\theta _1}(t))} \end{array}}\\ {\begin{array}{*{20}{l}} { - {r_1}\left( {2{L_1}\cos ({\theta _1}(t)){{{\dot{\theta }} }_1}(t)} \right) 2{L_2}\cos ({\theta _2}(t)) }\\ { - {r_1}\left( {2{L_2}\cos ({\theta _2}(t)){{{\dot{\theta }} }_2}(t)} \right) 2{L_2}\cos ({\theta _2}(t)) }\\ { - {r_1}\left( {{L_3} + {L_E}} \right) \cos ({\theta _3}(t)){{\dot{\theta }}_3}(t)2{L_2}\cos ({\theta _2}(t))} \end{array}}\\ {\begin{array}{*{20}{l}} { - {r_1}\left( {2{L_1}\cos ({\theta _1}(t)){{{\dot{\theta }} }_1}(t)} \right) \left( {{L_3} + {L_E}} \right) \cos ({\theta _3}(t)) }\\ { - {r_1}\left( {2{L_2}\cos ({\theta _2}(t)){{{\dot{\theta }} }_2}(t)} \right) \left( {{L_3} + {L_E}} \right) \cos ({\theta _3}(t)) }\\ { - {r_1}\left( {{L_3} + {L_E}} \right) \cos ({\theta _3}(t)){{\dot{\theta }}_3}(t)\left( {{L_3} + {L_E}} \right) \cos ({\theta _3}(t))} \end{array}}\\ 0 \end{array}} \right] . \end{aligned}$$
(135)

1.6 B.6 Pan-head suspension generalized force

$$\begin{aligned} {{\mathbf{Q}}_{k,2}}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ 0\\ { - {k_2}x(t)} \end{array}} \right] \end{aligned}$$
(136)
$$\begin{aligned} {{\mathbf{Q}}_{r,2}}(t)= & {} \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ 0\\ { - {r_2}\dot{x}(t)} \end{array}} \right] . \end{aligned}$$
(137)

1.7 B.7 Pantograph/catenary generalized contact force

$$\begin{aligned} {{\mathbf{Q}}_{k,3}}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\begin{array}{*{20}{l}} {{k_3}\left( {{H_0} + s(t)} \right) 2{L_1}\cos ({\theta _1}(t)) }\\ { + {k_3}\left( { - 2{L_1}\sin ({\theta _1}(t)) + 2{L_4}\sin (\beta - {\theta _2}(t))} \right) 2{L_1}\cos ({\theta _1}(t)) }\\ { + {k_3}\left( { - 2{L_2}\sin ({\theta _2}(t)) - x(t)} \right) 2{L_1}\cos ({\theta _1}(t))} \end{array}}\\ {\begin{array}{*{20}{l}} {{k_3}\left( {{H_0} + s(t) - 2{L_1}\sin ({\theta _1}(t))} \right) 2\left( {{L_4}\cos (\beta - {\theta _2}(t)) + {L_2}\cos ({\theta _2}(t))} \right) }\\ { + {k_3}\left( {2{L_4}\sin (\beta - {\theta _2}(t))} \right) 2\left( {{L_4}\cos (\beta - {\theta _2}(t)) + {L_2}\cos ({\theta _2}(t))} \right) }\\ { + {k_3}\left( { - 2{L_2}\sin ({\theta _2}(t)) - x(t)} \right) 2\left( {{L_4}\cos (\beta - {\theta _2}(t)) + {L_2}\cos ({\theta _2}(t))} \right) } \end{array}}\\ 0\\ {\begin{array}{*{20}{l}} {{k_3}\left( {{H_0} + s(t) - 2{L_1}\sin ({\theta _1}(t)) + 2{L_4}\sin (\beta - {\theta _2}(t))} \right) }\\ { + {k_3}\left( { - 2{L_2}\sin ({\theta _2}(t)) - x(t)} \right) } \end{array}} \end{array}} \right] \end{aligned}$$
(138)
$$\begin{aligned} {{\mathbf{Q}}_{r,3}}(t)= & {} \left[ {\begin{array}{*{20}{l}} {\begin{array}{*{20}{l}} {{r_3}\left( {\dot{s}(t) - 2{L_1}\cos ({\theta _1}(t)){{{\dot{\theta }} }_1}(t) - 2{L_4}\cos (\beta - {\theta _2}(t)){{{\dot{\theta }} }_2}(t)} \right) 2{L_1}\cos ({\theta _1}(t)) }\\ { + {r_3}\left( { - 2{L_2}\cos ({\theta _2}(t)){{{\dot{\theta }} }_2}(t) - \dot{x}(t)} \right) 2{L_1}\cos ({\theta _1}(t))} \end{array}}\\ {\begin{array}{*{20}{l}} {{r_3}\left( {\dot{s}(t) - 2{L_1}\cos ({\theta _1}(t)){{{\dot{\theta }} }_1}(t)} \right) 2\left( {{L_4}\cos (\beta - {\theta _2}(t)) + {L_2}\cos ({\theta _2}(t))} \right) }\\ { + {r_3}\left( { - 2{L_4}\cos (\beta - {\theta _2}(t)){{{\dot{\theta }} }_2}(t)} \right) 2\left( {{L_4}\cos (\beta - {\theta _2}(t)) + {L_2}\cos ({\theta _2}(t))} \right) }\\ { + {r_3}\left( { - 2{L_2}\cos ({\theta _2}(t)){{{\dot{\theta }} }_2}(t) - \dot{x}(t)} \right) 2\left( {{L_4}\cos (\beta - {\theta _2}(t)) + {L_2}\cos ({\theta _2}(t))} \right) } \end{array}}\\ 0\\ {\begin{array}{*{20}{l}} {{r_3}\left( {\dot{s}(t) - 2{L_1}\cos ({\theta _1}(t)){{{\dot{\theta }} }_1}(t) - 2{L_4}\cos (\beta - {\theta _2}(t)){{{\dot{\theta }} }_2}(t)} \right) }\\ { + {r_3}\left( { - 2{L_2}\cos ({\theta _2}(t)){{{\dot{\theta }} }_2}(t) - \dot{x}(t)} \right) } \end{array}} \end{array}} \right] . \end{aligned}$$
(139)

1.8 B.8 Control actuator generalized force

$$\begin{aligned} {{\mathbf{Q}}_u}(t) = \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ 0\\ {u(t)} \end{array}} \right] . \end{aligned}$$
(140)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, C.M., De Simone, M.C. & Guida, D. Multibody modeling and nonlinear control of the pantograph/catenary system. Arch Appl Mech 89, 1589–1626 (2019). https://doi.org/10.1007/s00419-019-01530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01530-3

Keywords

Navigation