Skip to main content

Advertisement

Log in

Improving application of galloping-based energy harvesters in realistic condition

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, the electromechanical equation of motion for a galloping-based energy harvesting system is derived and experimentally validated. This system consists of a bluff body that elastically mounted in fluid flow and a piezoelectric energy harvesting device, which is placed inside it. To confirm dynamic behavior of the system in fluid flow, periodic response of the variables is analytically obtained by employing the harmonic balance method. The validated equations are used to study effect of changing the system parameters on electromechanical behavior of the energy harvester. Then, application of the system is investigated in a realistic condition. Employing several user-oriented charts, the energy harvesting system is optimized and it is shown that this system can optimally be used in normal wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arnold, D.P.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43(11), 3940–3951 (2007)

    Article  Google Scholar 

  2. Afsharfard, A.: Application of nonlinear magnetic vibro-impact vibration suppressor and energy harvester. Mech. Syst. Signal Process. 98, 371–381 (2018)

    Article  Google Scholar 

  3. Mitcheson, P.D., et al.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A Phys. 115(2), 523–529 (2004)

    Article  Google Scholar 

  4. Ravi, S., Zilian, A.: Monolithic modeling and finite element analysis of piezoelectric energy harvesters. Acta Mech. 228(6), 2251–2267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cook-Chennault, K., Thambi, N., Sastry, A.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17(4), 043001 (2008)

    Article  Google Scholar 

  6. Afsharfard, A., Farshidianfar, A.: Application of single unit impact dampers to harvest energy and suppress vibrations. J. Intell. Mater. Syst. Struct. 25, 1850–1860 (2014)

    Article  Google Scholar 

  7. Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farshidianfar, A., Zanganeh, H.: A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio. J. Fluids Struct. 26(3), 430–441 (2010)

    Article  Google Scholar 

  9. Abdelkefi, A., Nayfeh, A., Hajj, M.: Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dyn. 68(4), 531–541 (2012)

    Article  Google Scholar 

  10. Hémon, P., Amandolese, X., Andrianne, T.: Energy harvesting from galloping of prisms: a wind tunnel experiment. J. Fluids Struct. 70, 390–402 (2017)

    Article  Google Scholar 

  11. Bibo, A.: Investigation of concurrent energy harvesting from ambient vibrations and wind, PhD thesis, Clemson University (2014)

  12. Akaydin, H., Elvin, N., Andreopoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21(2), 025007 (2012)

    Article  Google Scholar 

  13. Yan, Z., Abdelkefi, A.: Nonlinear characterization of concurrent energy harvesting from galloping and base excitations. Nonlinear Dyn. 77(4), 1171–1189 (2014)

    Article  Google Scholar 

  14. Piccardo, G., Pagnini, L.C., Tubino, F.: Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin. Mech. Thermodyn. 27(1–2), 261–285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hartog, D.J.: Mechanical Vibrations. McGraw-Hill Book Company, New York City (1956)

    MATH  Google Scholar 

  16. Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329(14), 2873–2883 (2010)

    Article  Google Scholar 

  17. Novak, M.: Aeroelastic galloping of prismatic bodies. J. Eng. Mech. Div. 95(1), 115–142 (1969)

    Google Scholar 

  18. Parkinson, G.: Phenomena and modelling of flow-induced vibrations of bluff bodies. Prog. Aerosp. Sci. 26(2), 169–224 (1989)

    Article  MathSciNet  Google Scholar 

  19. Alonso, G., Meseguer, J.: A parametric study of the galloping stability of two-dimensional triangular cross-section bodies. J. Wind Eng. Ind. Aerodyn. 94(4), 241–253 (2006)

    Article  Google Scholar 

  20. Alonso, G., Meseguer, J., Pérez-Grande, I.: Galloping stability of triangular cross-sectional bodies: a systematic approach. J. Wind Eng. Ind. Aerodyn. 95(9), 928–940 (2007)

    Article  Google Scholar 

  21. Xu-Xu, J., Barrero-Gil, A., Velazquez, A.: Experimental study on transverse flow-induced oscillations of a square-section cylinder at low mass ratio and low damping. Exp. Therm. Fluid Sci. 74, 286–295 (2016)

    Article  Google Scholar 

  22. Xu-Xu, J., Vicente-Ludlam, D., Barrero-Gil, A.: Theoretical study of the energy harvesting of a cantilever with attached prism under aeroelastic galloping. Eur. J. Mech. B Fluids 60, 189–195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25(2), 246–256 (2014)

    Article  Google Scholar 

  24. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70(2), 1355–1363 (2012)

    Article  MathSciNet  Google Scholar 

  25. Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22(2), 025016 (2013)

    Article  Google Scholar 

  26. Sirohi, J., Mahadik, R.: Piezoelectric wind energy harvester for low-power sensors. J. Intell. Mater. Syst. Struct. 22(18), 2215–2228 (2011)

    Article  Google Scholar 

  27. Daqaq, M.F.: Characterizing the response of galloping energy harvesters using actual wind statistics. J. Sound Vib. 357, 365–376 (2015)

    Article  Google Scholar 

  28. Bibo, A., Abdelkefi, A., Daqaq, M.F.: Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations. J. Vib. Acoust. 137(3), 031017 (2015)

    Article  Google Scholar 

  29. Abdelkefi, A., Yan, Z., Hajj, M.R.: Temperature impact on the performance of galloping-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22(5), 055026 (2013)

    Article  Google Scholar 

  30. Abdelmoula, H., Abdelkefi, A.: The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications. J. Sound Vib. 370, 191–208 (2016)

    Article  Google Scholar 

  31. Vicente-Ludlam, D., Barrero-Gil, A., Velazquez, A.: Enhanced mechanical energy extraction from transverse galloping using a dual mass system. J. Sound Vib. 339, 290–303 (2015)

    Article  Google Scholar 

  32. Nishi, Y., Fukuda, K., Shinohara, W.: Experimental energy harvesting from fluid flow by using two vibrating masses. J. Sound Vib. 394, 321–332 (2017)

    Article  Google Scholar 

  33. Nishi, Y., et al.: Power extraction using flow-induced vibration of a circular cylinder placed near another fixed cylinder. J. Sound Vib. 333(10), 2863–2880 (2014)

    Article  Google Scholar 

  34. Dai, H.L.: Towards control of cross-flow-induced vibrations based on energy harvesting. Nonlinear Dyn. 88, 1–18 (2017)

    Article  Google Scholar 

  35. Giorgio, I., et al.: Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. 47(4), 1051–1084 (2015)

    Article  Google Scholar 

  36. Hagood, N.W., von Flotow, A.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991)

    Article  Google Scholar 

  37. Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79(9), 859 (2009)

    Article  MATH  Google Scholar 

  38. Alessandroni, S., et al.: A passive electric controller for multimodal vibrations of thin plates. Comput. Struct. 83(15–16), 1236–1250 (2005)

    Article  Google Scholar 

  39. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2011)

    Book  Google Scholar 

  40. Vicente-Ludlam, D., Barrero-Gil, A., Velazquez, A.: Optimal electromagnetic energy extraction from transverse galloping. J. Fluids Struct. 51, 281–291 (2014)

    Article  Google Scholar 

  41. Abdelkefi, A., Hajj, M., Nayfeh, A.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22(1), 015014 (2012)

    Article  Google Scholar 

  42. https://www.windfinder.com/windstatistics/mashhad. Accessed 6 June 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Afsharfard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The potential energy of each piezoelectric and substructure layer is given in the following equation [39]:

$$\begin{aligned} \prod =\frac{1}{2}\int _{v_\mathrm{p} } {\sigma _\mathrm{p} \varepsilon \mathrm{d}v_\mathrm{p} } +\frac{1}{2}\int _{v_\mathrm{b} } {\sigma _\mathrm{b} \varepsilon \mathrm{d}v_\mathrm{b} } \end{aligned}$$
(A1)

where \(\varepsilon \) and \(\sigma \) are stress and strain, respectively. Also, Note that the integration is over the volume of the structure. Strain and stress can be written as:

$$\begin{aligned} \sigma _\mathrm{p} =E_\mathrm{p} \varepsilon +E_\mathrm{p} d_{31} E_3 ~,\quad \sigma _\mathrm{b} =E_\mathrm{b} \varepsilon ~,\quad \varepsilon =-z\frac{\partial ^{2}w_2 }{\partial x^{2}}~,\quad E_3 =\frac{V}{t_p } \end{aligned}$$
(A2)

This parameter along with electric displacement component \((D_{3})\) and electric field component in z direction \((E_{3})\). The relation, which is named as constitutive equation, is as follows:

$$\begin{aligned} D_3 =d_{31} \sigma -e_{33} E_3 \end{aligned}$$
(A3)

Substituting stress and strain relations into (A1), the final form of the potential energy for each piezoelectric and substructure layer is obtained.

$$\begin{aligned} \prod =\frac{1}{2}\int _{v_\mathrm{p} } {E_\mathrm{p} \left\{ {\left( {-z\frac{\partial ^{2}w_2 }{\partial x^{2}}} \right) ^{2}+d_{31} \frac{V}{t_\mathrm{p} }\left( {-z\frac{\partial ^{2}w_2 }{\partial x^{2}}} \right) } \right\} \mathrm{d}v_\mathrm{p} } +\frac{1}{2}\int _{v_\mathrm{b} } {E_\mathrm{b} \left( {-z\frac{\partial ^{2}w_2 }{\partial x^{2}}} \right) ^{2} \mathrm{d}v_\mathrm{b} } \end{aligned}$$
(A4)

Furthermore, using relations of Eq. (A3), the simplified form of internal electrical energy for each piezoelectric layer becomes:

$$\begin{aligned} W_\mathrm{ie} =\frac{1}{2}\int _{v_\mathrm{p} } {E_3 D_3 \mathrm{d}v_\mathrm{p} } =\frac{1}{2}\int _{v_\mathrm{p} } {\left( -\frac{V}{t_\mathrm{p} }\right) \left\{ {d_{31} E_\mathrm{p} \left( {-z\frac{\partial ^{2}w_2 }{\partial x^{2}}} \right) -e_{33} \frac{V}{t_\mathrm{p} }} \right\} \mathrm{d}v_\mathrm{p} } \end{aligned}$$
(A5)

Appendix B

Note that Eqs. (1)–(3) are integrated over the volume. In the first step, by substituting \(w_{\mathrm{b}}t_{\mathrm{b}}\) and \(w_\mathrm{p}t_\mathrm{p}\), respectively, as the surface of beam and piezoelectric layer, Eqs. (1)–(3) are rewritten over the length as follows:

$$\begin{aligned} \prod= & {} \int _0^L {E_\mathrm{b} w_\mathrm{b} t_\mathrm{b} \left( {-z\frac{\partial ^{2}w_2 }{\partial x^{2}}} \right) ^{2}\mathrm{d}x} +\int _0^L {E_\mathrm{p} w_\mathrm{p} t_\mathrm{p} \left( {-z\frac{\partial ^{2}w_2 }{\partial x^{2}}} \right) ^{2}\mathrm{d}x} \nonumber \\&+\,\int _0^{L_\mathrm{e} } {E_\mathrm{p} d_{31} w_\mathrm{p} V\left( {-z\frac{\partial ^{2}w_2 }{\partial x^{2}}} \right) } \mathrm{d}x+\frac{1}{2}K w_1^2 \end{aligned}$$
(B1)
$$\begin{aligned} T= & {} \int _0^L {\rho _\mathrm{b} w_\mathrm{b} t_\mathrm{b} \left( {\frac{\partial w_2 }{\partial t}+{\dot{w}}_1 } \right) ^{2}} ~ \mathrm{d}x+\int _0^L {\rho _\mathrm{p} w_\mathrm{p} t_\mathrm{p} \left( {\frac{\partial w_2 }{\partial t}+{\dot{w}}_1 } \right) ^{2}} ~ \mathrm{d}x+\frac{1}{2}M_\mathrm{bb} {\dot{w}}_1^2 \nonumber \\&+\,\frac{1}{2}m_\mathrm{tip} \left( {{\dot{w}}_1 +\left. {\frac{\partial w_2 }{\partial t}} \right| _{x=L} } \right) ^{2} \end{aligned}$$
(B2)
$$\begin{aligned} W_\mathrm{ie}= & {} \int _0^{L_\mathrm{e} } {E_\mathrm{p} d_{31} w_\mathrm{p} V} \left( -z\frac{\partial ^{2}w_2 }{\partial x^{2}}\right) \mathrm{d}x-e_{33} w_\mathrm{p} \frac{V^{2}}{t_\mathrm{p} }\int _0^L {\mathrm{d}x} \end{aligned}$$
(B3)

In the second step, by substituting Eqs. (B1)–(B3) into Eqs. (6)–(8) and using the orthogonality conditions, Eqs. (9)–(11) are obtained.

Appendix C

The fundamental Euler–Bernoulli beam equation for ith vibration mode is expressed as follows:

$$\begin{aligned} \frac{\mathrm{d}^{4}\varphi _i (x)}{\mathrm{d}x^{4}}-\omega _i ^{2}\frac{\rho A}{EI}\varphi _i (x)=0 \end{aligned}$$
(C1)

The above equation can be rewritten for rth and sth vibration modes:

$$\begin{aligned} EI\frac{\mathrm{d}^{4}\varphi _r (x)}{\mathrm{d}x^{4}}= & {} \omega _r ^{2}\rho A\varphi _r (x) \end{aligned}$$
(C2)
$$\begin{aligned} EI\frac{\mathrm{d}^{4}\varphi _s (x)}{\mathrm{d}x^{4}}= & {} \omega _s ^{2}\rho A\varphi _s (x) \end{aligned}$$
(C3)

Multiplying Eq. (C2) by \(\varphi _{s}(x)\) and integrating over the length of the beam gives:

$$\begin{aligned} \int _0^L {\varphi _s (x)EI\frac{\mathrm{d}^{4}\varphi _r (x)}{\mathrm{d}x^{4}}} \mathrm{d}x=\omega _r^2 \int _0^L {\varphi _s (x)\rho A\;\varphi _r (x)\;} \mathrm{d}x \end{aligned}$$
(C4)

Integrating the left side of the above equation and using boundary conditions leads to find Eq. (C5). Multiplying Eq. (C3) by \(\varphi _{r}(x)\) and integrating over the length of the beam results in find Eq. (C6):

$$\begin{aligned} \int _0^L {\frac{\mathrm{d}^{2}\varphi _s (x)}{\mathrm{d}x^{2}}EI\frac{\mathrm{d}^{2}\varphi _r (x)}{\mathrm{d}x^{2}}} \mathrm{d}x= & {} \omega _r^2 \left\{ {\int _0^L {\varphi _s (x)\rho A\;\varphi _r (x)\;} \mathrm{d}x+\varphi _s (L)m_\mathrm{tip} \;\varphi _r (L)} \right\} \end{aligned}$$
(C5)
$$\begin{aligned} \int _0^L {\frac{\mathrm{d}^{2}\varphi _s (x)}{\mathrm{d}x^{2}}EI\frac{\mathrm{d}^{2}\varphi _r (x)}{\mathrm{d}x^{2}}} \mathrm{d}x= & {} \omega _s^2 \left\{ {\int _0^L {\varphi _s (x)\rho A\;\varphi _r (x)\;} \mathrm{d}x+\varphi _s (L)m_\mathrm{tip} \;\varphi _r (L)} \right\} \end{aligned}$$
(C6)

Regarding to the above equations, in case of two distinctive mode shape (\( r \ne s\)), the following equation can be obtained:

$$\begin{aligned} \int _0^L {\varphi _s (x)\rho A\;\varphi _r (x)\;} \mathrm{d}x+\varphi _s (L)\frac{m_\mathrm{tip} }{2}\;\varphi _r (L)=0,\quad \omega _r^2 \ne \omega _s^2 \end{aligned}$$
(C7)

Orthogonality condition can be written as follows:

$$\begin{aligned} \int _0^L {\varphi _s (x)\rho A\;\varphi _r (x)\;} \mathrm{d}x+\varphi _s (L)\frac{m_\mathrm{tip} }{2}\;\varphi _r (L)=\delta _{rs} \end{aligned}$$
(C8)

where \(\delta _{rs}\) is the Kronecker delta, defined as unity for the case of \((r=s)\) and zero for \(( r \ne s\)). Considering the fundamental vibration mode (the first mode shape) Eq. (21) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhanirad, S., Afsharfard, A. Improving application of galloping-based energy harvesters in realistic condition. Arch Appl Mech 89, 313–328 (2019). https://doi.org/10.1007/s00419-018-1469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1469-4

Keywords

Navigation