Skip to main content
Log in

Vibration control of soft mounted induction motors with sleeve bearings using active motor foot mounts: a theoretical analysis

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the paper, the vibration control of induction motors with sleeve bearings—mounted on soft steel frame foundations—using active motor foot mounts is analyzed. The presented model is based on a multibody model, considering electromagnetic influence, stiffness, and rotating damping of the rotor, stiffness and damping of the bearing housings with end shields, of the oil film in the sleeve bearings, and of the foundation. Additionally, the stiffness and damping of the motor foot mounts—which are positioned between the motor feet and the steel frame foundation—are considered, as well as the controlled forces which are applied in the vibration system by the motor foot mounts, using PD-controllers. The aim of the paper is to unite all these influences in a mathematical model, including the control system. Based on a numerical example, it can be shown that the vibration behavior of soft mounted induction motors can be clearly improved and that critical speeds in the speed range can be avoided, using active motor foot mounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Genta, G.: Dynamics of Rotating Systems. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  2. Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  3. Vance, J.M., Zeidan, F.J., Murphy, B.: Machinery Vibration and Rotordynamics. Wiley, Hoboken (2010)

    Book  Google Scholar 

  4. Rao, J.S.: Rotor Dynamics. Wiley, New York (1996)

    Google Scholar 

  5. Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik. Springer, Berlin (2002)

    Book  Google Scholar 

  6. IEC 60034-14 (International Electrotechnical Commission): Rotating electrical machines—part 14: mechanical vibration of certain machines with shaft heights 56 mm and higher—measurement, evaluation and limits of vibration severity (2007)

  7. Preumont, A.: Vibration Control of Active Structures: An Introduction. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  8. Landau, I.D., Airimiţoaie, T.-B., Castellanos-Silva, A., Constantinescu, A.: Adaptive and Robust Active Vibration Control: Methodology and Tests. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  9. Sun, W., Gao, H., Yao, B.: Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators. IEEE Trans. Control Syst. Technol. 21(6), 2417–2422 (2013)

    Article  Google Scholar 

  10. Noshadi, A., Shi, J., Lee, W.S., Shi, P., Kalam, A.: Robust control of an active magnetic bearing system using H\(\infty \) and disturbance observer-based control. J. Vib. Control 23(11), 1857–1870 (2017)

    Article  Google Scholar 

  11. Ran, S., Hu, Y., Wu, H.: Design, modeling, and robust control of the flexible rotor to pass the first bending critical speed with active magnetic bearing. Adv. Mech. Eng. 10(2), 1687814018757536 (2018)

    Article  Google Scholar 

  12. Pesch, A.H., Sawicki, J.T.: Active magnetic bearing online levitation recovery through \(\upmu \)-synthesis robust control. Actuators 6(1), 1–14 (2017)

    Article  Google Scholar 

  13. Anantachaisilp, P., Lin, Z.: Fractional order PID control of rotor suspension by active magnetic bearings. Actuators 6(1), 1–32 (2017)

    Article  Google Scholar 

  14. Roy, A., Mukherjee, A., Das, S.: Performances comparison of nonlinear hydrodynamic journal bearing with rotor internal damping using optimal and fractional order controllers. In: Calcutta Conference (CALCON), 2017 IEEE (2017)

  15. Fuller, C.R., Elliot, S.J., Nelson, P.A.: Active Control of Vibration. Academic Press Limited, Cambridge (1996)

    Google Scholar 

  16. Janschek, K.: Mechatronic Systems Design: Methods, Models, Concepts. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  17. Ehmann, C., Nordmann, R.: Comparison of control strategies for active vibration control of flexible Structures. Arch. Control Sci. 13(3), 303–312 (2012)

    MATH  Google Scholar 

  18. Skricka, N., Markert, R.: Improvements of the integration of active magnetic bearings. Mechatronics 12, 1059–1068 (2002)

    Article  Google Scholar 

  19. Ulbrich, H.: A comparison of different actuator concepts for applications in rotating machinery. Int. J. Rotat. Mach. 1(1), 61–71 (1994)

    Article  Google Scholar 

  20. Bormann, J., Ulbrich, H., Abicht, C.: A fast and compact hydraulic actuator for active vibration control, design and applications. In: MOVIC ’98, pp. 171–176 (1998)

  21. Chen, H.M., Lewis, P., Donald, S., Wilson, S.: Active mounts. J. Acoust. Soc. Am. 91(4) (1998)

  22. Ushijima, T., Kumakawa, S.: Active engine mount with piezo-actuator for vibration control. SAE Technical Paper 930201 (1993)

  23. Sui, L., Xiong, X., Shi, G.: Piezoelectric actuator design and application on active vibration control. Phys. Procedia 25, 1388–1396 (2012)

    Article  Google Scholar 

  24. Dohnal, F., Ecker, H., Tondl, A.: Vibration control of self-excited oscillations by parametric stiffness excitation. In: 11th International Congress of Sound and Vibration, pp. 339–346 (2004)

  25. Werner, U.: Analysis of active vibration reduction for soft mounted electrical machines based on a multibody model. IJAM Int. J. Appl. Mech. 8, 1650085 (2017)

    Article  Google Scholar 

  26. Belmans, R., Vandenput, A., Geysen, W.: Calculation of the flux density and the unbalanced pull in two pole induction machines. Electr. Eng. 70(3), 151–161 (1987)

    Google Scholar 

  27. Früchtenicht, J., Jordan, H., Seinsch, H.O.: Exzentrizitätsfelder als Ursache von Laufinstabilitäten bei Asynchronmaschinen. Teil 1, Seite 271-281, Teil 2, Seite 283-292, Archiv für Elektrotechnik Bd. 65 (1982)

  28. Seinsch, H.O.: Oberfelderscheinungen in Drehfeldmaschinen. Teubner, Stuttgart (1992)

    Google Scholar 

  29. Smith, A.C., Dorrell, D.G.: Calculation and measurement of unbalanced magnetic pull in cage induction motors with eccentric rotors. I. Analytical model. In: Electric Power Applications, IEE Proceedings, vol. 143, no. 3, pp. 193–201 (1996)

  30. Arkkio, A., Antila, M., Pokki, K., Simon, A., Lantto, E.: Electromagnetic force on a whirling cage rotor. IEE. Proc. Electr. Power Appl. 147(5), 353–360 (2000)

    Article  Google Scholar 

  31. Guo, D., Chud, F., Chen, D.: The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor. J. Sound Vib. 254(2), 297–312 (2002)

    Article  Google Scholar 

  32. Holopainen, T.P.: Electromechanical interaction in rotor dynamics of cage induction motors. VTT Technical Research Centre of Finland, Ph.D. Thesis, Helsinki University of Technology, Finland (2004)

  33. Frauman, P., Burakov, A., Arkkio, A.: Effects of the slot harmonics on the unbalanced magnetic pull in an induction motor with an eccentric rotor. IEEE Trans. Magn. 43(8), 3441–3444 (2007)

    Article  Google Scholar 

  34. Dorrell, D.G.: Sources and characteristics of unbalanced magnetic pull in three-phase cage induction motors with axial-varying rotor eccentricity. IEEE Trans. Ind. Appl. 47(1), 12–24 (2011)

    Article  Google Scholar 

  35. Werner, U.: Influence of electromagnetic field damping on forced vibrations of induction rotors caused by dynamic rotor eccentricity, ZAMM- Zeitschrift für angewandte Mathematik und Mechanik/ Journal of Applied Mathematics and Mechanics, WILEY-VCH (2016)

  36. Werner, U.: Mathematical multibody model of a soft mounted induction motor regarding forced vibrations due to dynamic rotor eccentricities considering electromagnetic field damping. JAMP J. Appl. Math. Phys. 5, 346–364 (2017)

    Article  Google Scholar 

  37. Werner, U.: Influence of electromagnetic field damping on the vibration stability of soft mounted induction motors with sleeve bearings, based on a multibody model. In: Proceedings of SIRM-12th International Conference on Vibrations in Rotating Machines, Graz, Austria (2017)

  38. Dorrell, D.G., Salah, A., Guo, Y.: The detection and suppression of unbalanced magnetic pull in wound rotor induction motors using pole-specific search coils and auxiliary windings. IEEE Trans. Ind. Appl. 53(3), 2066–2076 (2017)

    Article  Google Scholar 

  39. ANSI/API 541 (American National Standards Institute/ American Petroleum Institute): Form-wound-squirrel-cage induction motors-500 horse power and larger (2004)

  40. Glienicke, J.: Feder- und Dämpfungskonstanten von Gleitlagern für Turbomaschinen und deren Einfluss auf das Schwingungsverhalten eines einfachen Rotors. Dissertation, Technische Hochschule Karlsruhe (1966)

  41. Lund, J., Thomsen, K.: A Calculation Method and Data for the Dynamics of Oil Lubricated Journal Bearings in Fluid Film Bearings and Rotor Bearings System Design and Optimization, pp. 1–28. ASME, New York (1978)

    Google Scholar 

  42. Tondl, A.: Some Problems of Rotor Dynamics. Chapman & Hall, London (1965)

    Google Scholar 

  43. Werner, U., Binder, A.: Dynamic analysis due to eccentricity in asynchronous machines, SDEMPED 2005. In: 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, IEEE Xplore, pp. 1–6 (2005)

  44. Werner, U.: Mathematical analysis of rotor shaft displacements in asynchronous machines; a critical speed or just a rotation of the orbit axis? ZAMM J. Appl. Math. Mech. 89(7), 514–535 (2009)

    Article  MATH  Google Scholar 

  45. Werner, U.: A mathematical model for lateral rotor dynamic analysis of soft mounted asynchronous machines. ZAMM J. Appl. Math. Mech. 88(11), 910–924 (2008)

    Article  MATH  Google Scholar 

  46. Werner, U.: Derivation of a plane vibration model for electrical machines on soft machine foundations. Eng. Res. 74(4), 185–205 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Werner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, U. Vibration control of soft mounted induction motors with sleeve bearings using active motor foot mounts: a theoretical analysis. Arch Appl Mech 88, 1657–1682 (2018). https://doi.org/10.1007/s00419-018-1393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1393-7

Keywords

Navigation