Skip to main content
Log in

Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A novel meshfree discretization technique in terms of the reproducing kernel particle method is presented for accurately evaluating mixed-mode intensity factors of cracked shear-deformable plates. Mindlin–Reissner plate theory is adopted to solve the cracked plates problem in the Galerkin formulation, considering transverse shear deformation. The diffraction method, visibility criterion and enriched basis are included in the generation of meshfree interpolants for the modeling of fracture. In this work, numerical integration is treated using the stabilized conforming nodal integration (SCNI) and subdomain stabilized conforming integration (SSCI). The J-integral (contour integral) is employed to analyze the fracture mechanics parameters. SCNI/SSCI is thus adopted to evaluate the contour integral and to split the original J-integral into symmetric and asymmetric J-integral values. They are calculated by decomposing the smoothed displacement, moment and shear force quantities into symmetric/asymmetric parts. In addition, a displacement ratio method is introduced to divide the asymmetric J-integral value into corresponding moment and shear force intensity factors. The accuracy of the intensity factors and the path-independent properties in mixed-mode fracture problems are critically examined through several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Maddox, S.J.: Fatigue Strength of welded Structures, 2nd edn. Abington Publishing, Abington (2002)

    Google Scholar 

  2. Suresh, S.: Fatigue of Materials, 2nd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Fricke, W.: Fatigue analysis of welded joints: state of development. Mar. Struct. 16(3), 185–200 (2003)

    Article  Google Scholar 

  4. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications, 3rd edn. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  5. Toyosada, M., Gotoh, K., Niwa, T.: Fatigue crack propagation for a through thickness crack: a crack propagation law considering cyclic plasticity near the crack tip. Int. J. Fatig. 26(9), 983–992 (2004)

    Article  Google Scholar 

  6. Toyosada, M., Gotoh, K., Niwa, T.: Fatigue life assessment for welded structures without initial defects: an algorithm for predicting fatigue crack growth from a sound site. Int. J. Fatig. 26(9), 993–1002 (2004)

    Article  Google Scholar 

  7. Okawa, T., Sumi, Y., Mohri, M.: Simulation-based fatigue crack management of ship structural details applied to longitudinal and transverse connections. Mar. Struct. 19(4), 217–240 (2006)

    Article  Google Scholar 

  8. Sumi, Y., Nakamura, M., Mohri, M.: Crack paths in weld details under combined normal and shear loading. Eng. Fract. Mech. 77(11), 2115–2125 (2010)

    Article  Google Scholar 

  9. He, W., Liu, J., Xie, D.: Numerical study on fatigue crack growth at a web-stiffener of ship structural details by an objected-oriented approach in conjunction with ABAQUS. Mar. Struct. 35, 45–69 (2014)

    Article  Google Scholar 

  10. Qiao, W., Sun, J., Xie, D.: Development of super element to perform direct analysis on failure assessment of hull structures based on FAD. Mar. Struct. 39, 373–394 (2014)

    Article  Google Scholar 

  11. Yao, T., Fujikubo, M.: Buckling and Ultimate Strength of Ship and Ship-like Floating Structures, 1st edn. Butterworth-Heinemann, Oxford (2016)

    Google Scholar 

  12. Hui, C.Y., Zehnder, A.T.: A theory for the fracture of thin plates subjected to bending and twisting moments. Int. J. Fract. 61(3), 211–229 (1993)

    Article  Google Scholar 

  13. Young, M.J., Sun, C.T.: Cracked plates subjected to out-of-plane tearing loads. Int. J. Fract. 60(1), 1–18 (1993)

    Article  Google Scholar 

  14. Viz, M.J., Potyondy, D.O., Zehnder, A.T., Rankin, C.C., Riks, E.: Computation of membrane and bending stress intensity factors for thin, cracked plates. Int. J. Fract. 72(1), 21–38 (1995)

    Article  Google Scholar 

  15. Su, R.K.L., Leung, A.Y.T.: Mixed mode cracks in Reissner plates. Int. J. Fract. 107(3), 235–257 (2001)

    Article  Google Scholar 

  16. Dirgantara, T., Aliabadi, M.H.: Stress intensity factors for cracks in thin plates. Eng. Fract. Mech. 69(13), 1465–1486 (2002)

    Article  Google Scholar 

  17. Aliabadi, M.H.: A new generation of boundary element methods in fracture mechanics. Int. J. Fract. 86(1), 91–125 (1997)

    Article  Google Scholar 

  18. Dolbow, J., Moës, N., Belytschko, T.: Modeling fracture in Mindlin-Reissner plates with the extended finite element method. Int. J. Solid. Struct. 37(48–50), 7161–7183 (2000)

    Article  MATH  Google Scholar 

  19. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  MATH  Google Scholar 

  20. Wang, Y.H., Tham, L.G., Lee, P.K.K., Tsui, Y.: A boundary collocation method for cracked plates. Comput. Struct. 81(28–29), 2621–2630 (2003)

    Article  Google Scholar 

  21. Zehnder, A.T., Viz, M.J.: Fracture mechanics of thin plates and shells under combined membrane, bending and twisting loads. Appl. Mech. Rev. 58(1), 37–48 (2005)

    Article  Google Scholar 

  22. Nguyen-Thanh, N., Valizadeh, N., Nguyen, M.N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L., Rabczuk, T.: An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Comput. Methods Appl. Mech. Eng. 284, 265–291 (2015)

    Article  MathSciNet  Google Scholar 

  23. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu, T.T., Yin, S., Bui, Q.T., Xia, S., Tanaka, S., Hirose, S.: NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin-Walled Struct. 101, 141–156 (2016)

    Article  Google Scholar 

  25. Yu, T.T., Bui, Q.T., Yin, S., Doan, D.H., Wu, C.T., Do, T.V., Tanaka, S.: On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis. Compos. Struct. 136, 684–695 (2016)

    Article  Google Scholar 

  26. Yin, S., Yu, T.T., Bui, Q.T., Zheng, X., Tanaka, S.: In-plane material inhomogeneity of functionally graded plates: a higher-order shear deformation plate isogeometric analysis. Compos. Part B Eng. 106, 273–284 (2016)

    Article  Google Scholar 

  27. Yin, S., Yu, T.T., Bui, Q.T., Liu, P., Hirose, S.: Buckling and vibration extended isogeometric analysis of imperfect graded Reissner–Mindlin plates with internal defects using NURBS and level sets. Comput. Struct. 177, 23–38 (2016)

    Article  Google Scholar 

  28. Sih, G.C. (ed.): Plates and Shells with Cracks, Mechanics of Fracture, vol. 3. Noordhoff International Publishing, Leyden (1977)

    Google Scholar 

  29. Murakami, Y. (ed.): Stress Intensity Factors Handbook. Pergamon Press, Oxford (1987)

    Google Scholar 

  30. Dirgantara, T., Aliabadi, M.H.: Crack growth analysis of plates loaded by bending and tension using dual boundary element method. Int. J. Fract. 105(1), 27–47 (2000)

    Article  Google Scholar 

  31. Dirgantara, T., Aliabadi, M.H.: Numerical simulation of fatigue crack growth in pressurized shells. Int. J. Fatig. 24(7), 725–738 (2002)

    Article  MATH  Google Scholar 

  32. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluid. 20(8–9), 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, D., Chen, J.S.: Locking-free stabilized conforming nodal integration for meshfree Mindlin–Reissner plate formulation. Comput. Methods Appl. Mech. Eng. 193(12–14), 1065–1083 (2004)

    MATH  Google Scholar 

  34. Wang, D., Sun, Y.: A Galerkin meshfree method with stabilized conforming nodal integration for geometrically nonlinear analysis of shear deformable plates. Int. J. Comput. Methods 8(4), 685–703 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sadamoto, S., Tanaka, S., Okazawa, S.: Elastic large deflection analysis of plates subjected to uniaxial thrust using meshfree Mindlin–Reissner formulation. Comput. Mech. 52(6), 1313–1330 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Organ, D., Fleming, M., Terry, T., Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18(3), 225–235 (1996)

    Article  MATH  Google Scholar 

  37. Krysl, P., Belytschko, T.: Element-free Galerkin method: convergence of the continuous and discontinuous shape functions. Comput. Methods Appl. Mech. Eng. 148(3–4), 257–277 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fleming, M., Chu, Y.A., Moran, B., Belytschko, T.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Methods Eng. 40(8), 1483–1504 (1997)

    Article  MathSciNet  Google Scholar 

  39. Joyot, P., Trunzler, J., Chinesta, F.: Enriched reproducing kernel approximation: reproducing functions with discontinuous derivatives. Lect. Notes Comput. Sci. Eng. 43, 93–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin meshfree methods. Int. J. Numer. Methods Eng. 50(2), 435–466 (2001)

    Article  MATH  Google Scholar 

  41. Chen, J.S., Yoon, S., Wu, C.T.: Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 53(12), 2587–2615 (2002)

    Article  MATH  Google Scholar 

  42. Wang, D., Chen, J.S.: A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int. J. Numer. Methods Eng. 74(3), 368–390 (2008)

    Article  MATH  Google Scholar 

  43. Wang, D., Lin, Z.: Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration. Comput. Mech. 46(5), 703–719 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, D., Lin, Z.: Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures. Comput. Mech. 48(1), 47–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, D., Lin, Z.: A comparative study on the dispersion properties of HRK and RK meshfree approximations for Kirchhoff plate problem. Int. J. Comput. Methods 9(1), 1240015 (2012)

    Article  MathSciNet  Google Scholar 

  46. Tanaka, S., Sadamoto, S., Okazawa, S.: Nonlinear thin-plate bending analyses using the Hermite reproducing kernel approximation. Int. J. Comput. Methods 9(1), 1240012 (2012)

    Article  MathSciNet  Google Scholar 

  47. Wang, D., Peng, H.: A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Comput. Mech. 51(6), 1013–1029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rigby, R.H., Aliabadi, M.H.: Mixed-mode J-integral method for analysis of 3D fracture problems using BEM. Eng. Anal. Bound. Elem. 11(3), 239–256 (1993)

    Article  Google Scholar 

  49. Tanaka, S., Suzuki, H., Sadamoto, S., Sannomaru, S., Yu, T., Bui, Q.T.: \(J\)-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method. Comput. Mech. 58(2), 185–198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tanaka, S., Suzuki, H., Sadamoto, S., Imachi, M., Bui, Q.T.: Analysis of cracked shear deformable plates by an effective meshfree plate formulation. Eng. Fract. Mech. 144, 142–157 (2015)

    Article  Google Scholar 

  51. Stephen, N.G.: Mindlin plate theory: best shear coefficient and higher spectra validity. J. Sound Vib. 202(4), 539–553 (1997)

    Article  Google Scholar 

  52. Sosa, H.A., Eischen, J.W.: Computation of stress intensity factors for plate bending via a path-independent integral. Eng. Fract. Mech. 25(4), 451–462 (1986)

    Article  Google Scholar 

  53. Sosa, H., Herrmann, G.: On invariant integrals in the analysis of cracked plates. Int. J. Fract. 40(2), 111–126 (1989)

    Article  MathSciNet  Google Scholar 

  54. Liu, D.S., Cheng, K.L., Zhuang, Z.W.: Development of plate infinite element method for stress analysis of elastic bodies with singularities. J. Mech. 29(3), 481–492 (2013)

    Article  Google Scholar 

  55. Liu, D.S., Chiou, D.Y.: A coupled IEM/FEM approach for solving elastic problems with multiple cracks. Int. J. Solid. Struct. 40(8), 1973–1993 (2003)

    Article  MATH  Google Scholar 

  56. Liu, D.S., Chiou, D.Y.: Modeling of inclusions with interphases in heterogeneous material using the infinite element method. Comput. Mater. Sci. 31(3–4), 405–420 (2004)

    Article  Google Scholar 

  57. Liu, D.S., Chiou, D.Y.: 2-D infinite element modeling for elastostatic problems with geometric singularity and unbounded domain. Comput. Struct. 83(25–26), 2086–2099 (2005)

    Article  Google Scholar 

  58. Joseph, P.F., Erdogan, F.: Bending of a thin Reissner plate with a through crack. J. Appl. Mech. 58(3), 842–846 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the JSPS Grants-in-Aid for Young Scientists (B)(16K18323) and for Scientific Research (A)(15H02328), (B)(15H04212), (B)(16H04603), (C)(15K06632). This work was performed as part of the Cooperative Research Program of the Joining and Welding Research Institute, Osaka University. Tinh Quoc Bui gratefully acknowledges support from Grant-in-Aid for Scientific Research - JSPS. TT Yu gratefully acknowledges support from the National Natural Science Foundation of China (51179063) and the National Sci-Tech Support Plan of China (2015BAB07B10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, S., Suzuki, H., Sadamoto, S. et al. Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation. Arch Appl Mech 87, 279–298 (2017). https://doi.org/10.1007/s00419-016-1193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1193-x

Keywords

Navigation