Skip to main content
Log in

Modeling of pre-fracture zones for limited permeable crack in piezoelectric materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A plane-strain problem for a limited permeable crack in an adhesive thin interlayer between two semi-infinite piezoelectric spaces is considered. The tensile mechanical stress and the electric displacement are applied at infinity. The interlayer is assumed to be softer than the connected materials; therefore, the zones of mechanical yielding and electric saturations can arise at the crack tips on the continuations of the crack. These zones are considered in this work. It was assumed that the length of electric saturation zones is larger than the length of mechanical yield zones. The zones of mechanical yielding are modeled by the crack continuations with normal compressive stresses applied at its faces. The electric saturation zones are modeled by segments at the crack continuations with prescribed saturated electric displacements. These electric displacements can linearly vary along the mechanical yielding zones. The problem is reduced to the Hilbert–Riemann problem of linear relationship, which is solved exactly. The equation for the determination of the yielding zones length, the expressions for the crack-opening displacement jump, electric potential jump, and J-integral is obtained in an analytical form. In case of finite size body, the finite elements method is used and the variation in the fracture mechanical parameters with respect to this size is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang B.L., Mai Y.W.: On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int. J. Eng. Sci. 41, 633–652 (2003)

    Article  Google Scholar 

  2. Deeg, W.F.: The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph.D. Thesis, Stanford University (1980)

  3. Pak Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79–100 (1992)

    Article  Google Scholar 

  4. Suo Z., Kuo C.M., Barnett D.M., Willis J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Parton V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)

    Article  MATH  Google Scholar 

  6. Parton V.Z., Kudryavtsev B.A.: Electromagnetoelasticity. Gordon and Breach Science Publishers, New York (1988)

    Google Scholar 

  7. Hao T.H., Shen Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fract. Mech. 47, 793–802 (1994)

    Article  Google Scholar 

  8. Zhao M.H., Fan C.Y.: Strip electric–magnetic breakdown model in a magnetoelectroelastic medium. J. Mech. Phys. Solids 56, 3441–3458 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leonov M.Y., Panasyuk V.V.: Development of the smallest cracks in a rigid body. Appl. Mech. 5(4), 391–401 (1959) (in Russian)

    MathSciNet  Google Scholar 

  10. Dugdale D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–108 (1960)

    Article  Google Scholar 

  11. Gao H., Barnett D.M.: An invariance property of local energy release rate in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79, R25–R29 (1996)

    Article  Google Scholar 

  12. Shen S., Nishioka T., Kuang Z.B., Liu Z.: Nonlinear electromechanical interfacial fracture for piezoelectric materials. Mech. Mater. 32, 57–64 (2000)

    Article  Google Scholar 

  13. Li S.: On saturation-strip model of a permeable crack in a piezoelectric ceramic. Acta Mech. 165, 47–71 (2003)

    Article  MATH  Google Scholar 

  14. Wang B.L., Zhang X.H.: Fracture prediction for piezoelectric ceramics based on the electric field saturation concept. Mech. Res. Commun. 32, 411–419 (2005)

    Article  MATH  Google Scholar 

  15. Beom H.G., Kim Y.H., Cho C., Kim C.B.: Asymptotic analysis of an impermeable crack in an electrostrictive material subjected to electric loading. Int. J. Solids Struct. 43, 6869–6886 (2006)

    Article  MATH  Google Scholar 

  16. Fan C.Y., Zhao Y.F., Zhao M.H., Pan E.: Analytical solution of a semi-permeable crack in a 2D piezoelectric medium based on the PS model. Mech. Res. Commun. 40, 34–40 (2012)

    Article  Google Scholar 

  17. Zhang T.Y., Gao C.F.: Fracture behavior of piezoelectric materials. Thero. Appl. Fract. Mech. 41, 339–379 (2004)

    Article  Google Scholar 

  18. Gao C.F., Noda N., Zhang T.Y.: Dielectric breakdown model for a conductive crack and electrode in piezoelectric materials. Int. J. Eng. Sci. 44, 256–272 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fan C.Y., Zhao M.H., Zhou Y.H.: Numerical solution of polarization saturation/dielectric breakdown model in 2D finite piezoelectric media. J. Mech. Phys. Solids 57, 1527–1544 (2009)

    Article  MATH  Google Scholar 

  20. Loboda V., Lapusta Y., Sheveleva A.: Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric biomaterial. Int. J. Solids Struct. 44, 5538–5553 (2007)

    Article  MATH  Google Scholar 

  21. Loboda V., Lapusta Y., Govorukha V.: Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. Int. J. Eng. Sci. 46, 260–272 (2008)

    Article  MATH  Google Scholar 

  22. Lapusta Y., Loboda V.: Electro-mechanical yielding for a limited permeable crack in an interlayer between piezoelectric materials. Mech. Res. Commun. 36, 183–192 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Loboda V., Lapusta Y., Sheveleva A.: Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int. J. Solids Struct. 47, 1795–1806 (2010)

    Article  MATH  Google Scholar 

  24. Bhargava R.R., Jangid K.: Strip electro-mechanical yielding model for piezoelectric plate cut along two equal collinear cracks. Appl. Math. Model. 37, 9101–9116 (2013)

    Article  MathSciNet  Google Scholar 

  25. Xue C., Yong H., Zhou Y.: The mechanical crack tip opening displacement fracture criterion in piezoelectric ceramics. Eng. Fract. Mech. 96, 606–614 (2012)

    Article  Google Scholar 

  26. Wang C.H.: Analysis of cracks in constrained layers. Int. J. Fract. 83, 1–17 (1997)

    Article  MATH  Google Scholar 

  27. Herrmann K., Loboda V.: Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models. Arch. Appl. Mech. 70(1-3), 127–143 (2000)

    Article  MATH  Google Scholar 

  28. Muskhelisvili N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff, Groningen (1963)

    Google Scholar 

  29. Govorukha V.B., Loboda V.V., Kamlah M.: On the influence of the electric permeability on an interface crack in a piezoelectric bimaterial compound. Int. J. Solids Struct. 43, 1979–1990 (2006)

    Article  MATH  Google Scholar 

  30. Gao H., Zhang T.Y., Tong P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Loboda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapusta, Y., Viun, O. & Loboda, V. Modeling of pre-fracture zones for limited permeable crack in piezoelectric materials. Arch Appl Mech 84, 1205–1220 (2014). https://doi.org/10.1007/s00419-014-0879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0879-1

Keywords

Navigation