Skip to main content
Log in

A generalized Weibull approach to interface failure in bi-material ceramic joints

Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Due to the inherent brittleness of ceramics, the reliability of ceramic components is evaluated using the Weibull theory. Hence, the failure probability due to the presence of surface or volume flaws is calculated using a suitable fracture mechanics approach. In the following paper, the weakest link approach is generalized for the case of bi-material ceramic joints. Here, interface cracks need to be considered for causing failure. Interface failure probability is found to be a function of the crack tip mode-mixity state. This influence is assessed in the general loading case for a bi-material strip with an internal interface crack. Under certain conditions, a simplified analysis is possible, leading to a conservative assessment of the failure probability for interface cracks in a gradually varying remote stress field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Banks-Sills L.: Weight functions for interface cracks. Int. J. Fract. 60, 89–95 (1993)

    Article  Google Scholar 

  2. Batdorf S.B., Heinisch H.L.: Weakest link theory reformulated for arbitrary fracture criterion. J. Am. Ceram. Soc. 61, 355–358 (1978)

    Article  Google Scholar 

  3. Beremin F.M.: A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Trans. A 14, 2277–2287 (1983)

    Article  Google Scholar 

  4. Brueckner-Foit, A., Huelsmeier, P., Sckuhr, M., Riesch-Oppermann, H.: Limitations of the weibull theory in stress fields with pronounced stress gradients. In: Proceedings of ASME Turbo Expo, Munich, Germany, pp. 1–5 (2000)

  5. Charalambides P.G., Lund J., Evans A.G., McMeeking R.M.: A test specimen for determining the fracture resistance of bimaterial interfaces. J. Appl. Mech. 56, 77–82 (1989)

    Article  Google Scholar 

  6. Comninou M.: The interface crack. J. Appl. Mech. (Trans. ASME) 44, 631–636 (1977)

    Article  MATH  Google Scholar 

  7. Dundurs J.: Effect of elastic constants on stress in a composite under plane deformations. J. Compos. Mater. 1, 310–322 (1967)

    Google Scholar 

  8. England A.H.: A crack between dissimilar media. J. Appl. Mech. (Trans. ASME) 32, 400–402 (1965)

    Article  Google Scholar 

  9. Erdogan F.: Stress distribution in bonded dissimilar materials with cracks. J. Appl. Mech. (Trans. ASME) 32, 403–410 (1965)

    Article  MathSciNet  Google Scholar 

  10. Evans A.G.: A general approach for the statistical analysis of multiaxial fracture. J. Am. Ceram. Soc. 61, 302–308 (1978)

    Article  Google Scholar 

  11. Evans A.G., Hutchinson J.W.: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43, 2507–2530 (1995)

    Article  Google Scholar 

  12. Fett T., Munz D.: Stress Intensity Factors and Weight Functions. Computational Mechanics Publications, Southampton (1997)

    Google Scholar 

  13. Gaupta V., Argon A.S., Parks D.M., Cornie J.A.: Measurement of interface strength by laser spallation technique. J. Mech. Phys. Solids 40, 141–180 (2004)

    Article  Google Scholar 

  14. Govorukha V.B., Loboda V.V.: On the boundary integral equations approach to the semi-infinite strip investigation. Acta Mech. 128, 105–115 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. He M.-Y., Hutchinson J.W.: Kinking of a crack out of an interface. J. Appl. Mech. (Trans. ASME) 56, 270–278 (1989)

    Article  Google Scholar 

  16. Herrmann K.P., Loboda V.V.: Special approach for the determination of fracture mechanical parameters at an interface crack tip. Arch. Appl. Mech. 68, 227–236 (1998)

    Article  MATH  Google Scholar 

  17. Hutchinson J.W., Suo Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 2, 63–191 (1992)

    Google Scholar 

  18. Lin T., Evans A.G., Ritchie R.O.: A statistical model of brittle fracture by transgranular cleavage. J. Mech. Phys. Solids 34, 477–497 (1986)

    Article  Google Scholar 

  19. Loboda V.V.: The problem of orthotropic semi-infinite strip with crack along the fixed end. Eng. Fract. Mech. 55(1), 7–17 (1996)

    Article  MathSciNet  Google Scholar 

  20. Matsuo Y.: Probabilistic analysis of the brittle fracture loci under biaxial stress state. Bull. JSME 24, 290–294 (1981)

    Article  Google Scholar 

  21. Munz D., Fett T.: Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection. Springer, Berlin (1999)

    Google Scholar 

  22. Muskhelishvili N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Nordhoff, Groningen (1954)

    Google Scholar 

  23. Nemeth, N.N., Powers, L.M., Janosik, L.A., Gyekenyesi, J.P: CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program. NASA/TM-2003-106316, Cleveland, Ohio (2003)

  24. Neville D.J, Knott J.F.: Statistical distributions of toughness and fracture stress for homogeneous and inhomogeneous materials. J. Mech. Phys. Solids 34, 243–291 (1986)

    Article  Google Scholar 

  25. Poncelet M., Doudard C., Calloch S., Weber B., Hild F.: Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue. J. Mech. Phys. Solids 58, 578–593 (2010)

    Article  Google Scholar 

  26. Rice, J.R.: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. (Trans. ASME) (55), 98–103 (1988)

  27. Riesch-Oppermann H., Härtelt M., Kraft O.: STAU—a review of the Karlsruhe weakest-link finite element postprocessor with extensive capabilities. Int. J. Mater. Res. 99, 1055–1065 (2008)

    Google Scholar 

  28. Suo Z.: Models for breakdown-resistant dielectric and ferroelectric ceramics. J. Mech. Phys. Solids 41, 1155–1176 (1993)

    Article  Google Scholar 

  29. Tranter C.J.: Integral Transforms in Mathematical Physics. Wiley, New York (1956)

    MATH  Google Scholar 

  30. Weibull W.: A statistical theory of the strength of materials. Ing. Vetenk. Akad. Handl. 151, 1–45 (1939)

    Google Scholar 

  31. Wu S.J., Knott J.F.: On the statistical analysis of the local fracture stresses in notched bars. J. Mech. Phys. Solids 52, 907–924 (2004)

    Article  Google Scholar 

  32. Yahsi O.S., Gocmen A.E.: Contact problem for two perfectly bonded dissimilar infinite strips. Int. J. Fract. 34, 161–177 (1987)

    Article  Google Scholar 

  33. Zweben C., Rosen B.W.: A statistical theory of material strength with application to composite materials. J. Mech. Phys. Solids 18, 189–206 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Melikayeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melikayeva, I., Riesch-Oppermann, H., Govorukha, V.B. et al. A generalized Weibull approach to interface failure in bi-material ceramic joints. Arch Appl Mech 81, 1585–1596 (2011). https://doi.org/10.1007/s00419-010-0503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0503-y

Keywords

Navigation