Skip to main content
Log in

On the influence of electric boundary conditions on dynamic SIFs in piezoelectric materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Dynamic stress intensity factors (SIFs) for a straight crack in a piezoelectric material under time-harmonic L- and SH-wave loading are determined for different electric boundary conditions. Impermeable, permeable and limited permeable cracks are compared. The problem is formulated and numerically solved using a nonhypersingular traction-based boundary integral equation method where the fundamental solution is obtained by Radon transform. A parametric study in the frequency domain shows the dependence of the SIFs on the choice of the electrical boundary conditions at the crack faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deeg, W.F.: The analysis of dislocation, cracks and inclusion problems in piezoelectric solids. PhD thesis, Stanford University, Stanford, CA (1980)

  2. Pak Y.E.: Crack extension force in a piezoelectric material. ASME J. Appl. Mech. 57, 647–653 (1990)

    Article  MATH  Google Scholar 

  3. Sosa H.: On the fracture mechanics of piezoelectric solids. Int. J. Solids Struct. 29, 2613–2622 (1992)

    Article  MATH  Google Scholar 

  4. Pak Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79–100 (1992)

    Article  Google Scholar 

  5. Suo Z., Kuo C.M., Barnett D.M., Willis J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wang B.: Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Solids Struct. 29, 293–308 (1992)

    Article  MATH  Google Scholar 

  7. Zhang T.Y., Hack J.E.: Mode III cracks in piezoelectric materials. J. Appl. Phys. 71, 5865–5870 (1992)

    Article  Google Scholar 

  8. Park, S.B.: Fracture behaviour of piezoelectric materials. PhD thesis, Purdue University (1994)

  9. Park S.B., Sun C.T.: Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70, 203–216 (1995)

    Article  Google Scholar 

  10. Wang B.L., Mai Y.-W.: A piezoelectric material strip with a crack perpendicular to its boundary surfaces. Int. J. Solids Struct. 39, 4501–4524 (2002)

    Article  MATH  Google Scholar 

  11. Fulton C.C., Gao H.: Effect of local polarization switching on piezoelectric fracture. J. Mech. Phys. Solids 49, 927–952 (2001)

    Article  MATH  Google Scholar 

  12. Wang B.L., Hau S.Y., Du S.Y.: New considerations for the fracture of piezoelectric materials under electromechanical loading. Mech. Res. Commun. 27, 435–444 (2000)

    Article  MATH  Google Scholar 

  13. Wang B.L., Mai Y.-W.: On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int. J. Eng. Sci. 41, 633–652 (2003)

    Article  Google Scholar 

  14. Parton V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)

    Article  MATH  Google Scholar 

  15. McMeeking R.M.: Electrostrictive stresses near crack-like flaws. J. Appl. Math. Phys. 40, 615–627 (1989)

    Article  MATH  Google Scholar 

  16. McMeeking R.M.: The energy release rate for a Griffith crack in a piezoelectric material. Eng. Fract. Mech. 71, 1149–1163 (2004)

    Article  Google Scholar 

  17. Shindo Y., Ozawa E.: Dynamic analysis of a cracked piezoelectric material. In: Hsieh, R.K.T. (eds) Mechanical Modeling of New Electromagnetic Materials, pp. 297–304. Elsevier, Amsterdam (1990)

    Google Scholar 

  18. Shindo Y., Ozawa E., Nowacki J.P.: Singular stress and electric fields of a cracked piezoelectric strip. Int. J. Appl. Electromagn. Mech. 1, 77–87 (1990)

    Google Scholar 

  19. Ou Z.S., Chen Z.H.: Discussion of the crack faces electric boundary condition in piezoelectric fracture mechanics. Int. J. Fract. 123, L151–L155 (2003)

    Article  Google Scholar 

  20. Wang X.D., Meguid S.A.: Effect of electromechanical coupling on the dynamic interaction of cracks in piezoelectric materials. Acta Mech. 143, 1–15 (2000)

    Article  MATH  Google Scholar 

  21. McMeeking R.M.: Crack tip energy relase rate for a piezoelectric compact tension specimen. Eng. Fract. Mech. 64, 217–244 (1999)

    Article  Google Scholar 

  22. Hao T.H., Shen Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fract. Mech. 47, 793–802 (1994)

    Article  Google Scholar 

  23. Wang X.D., Jiang L.Y.: Fracture behaviour of cracks in piezoelectric media with electromechanically coupled boundary conditions. Proc. R. Soc. Lond. A458, 2545–2560 (2002)

    Google Scholar 

  24. Kuna M.: Finite element analyses of cracks in piezoelectric structures: a survey. Arch. Appl. Mech. 76, 725–745 (2006)

    Article  MATH  Google Scholar 

  25. Parton V.Z., Kudryavtsev B.A.: Electromagnetoelasticity. Gordon and Breach Science Publishers, New York (1988)

    Google Scholar 

  26. Landis C.M.: Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids Struct. 41, 6241–6315 (2004)

    Google Scholar 

  27. Wippler K., Recoeur A., Kuna M.: Towards the computation of electrically permeable cracks in piezoelectrics. Eng. Fract. Mech. 71, 2567–2587 (2004)

    Article  Google Scholar 

  28. Shindo Y., Narita F., Ozawa E.: Impact response of a finite crack in an orthotropic piezoelectric ceramic. Acta Mech. 137, 99–107 (1999)

    Article  MATH  Google Scholar 

  29. Enderlein M., Ricoeur A., Kuna M.: Finite element technique for dynamic crack analysis in piezoelectrics. Int. J. Fract. 134, 191–208 (2005)

    Article  Google Scholar 

  30. Zhang C.H., Gross D.: On Wave Propagation in Elastic Solids with Cracks. Computational Mechanics Publication, Southampton (1998)

    MATH  Google Scholar 

  31. Gross D., Rangelov T., Dineva P.: 2D Wave scattering by a crack in a piezoelectric plane using traction BIEM. J. Struct. Integr. Durab. 1, 35–47 (2005)

    Google Scholar 

  32. Wang C.-Y., Zhang C.H.: 2D and 3D dynamic Green’s functions and time-domain BIE formulations for piezoelectric solids. Eng. Anal. Bondary Elements 29, 454–465 (2005)

    Article  MATH  Google Scholar 

  33. Rangelov T., Dineva P., Gross D.: Effects of material inhomogeneity on the dynamic behaviour of cracked piezoelectric solids: a BIEM approach. ZAMM 88(2), 86–99 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rangelov T., Dineva P., Gross D.: A hypersingular traction boundary integral equation method for stress intensity factor computation in a finite cracked body. Eng. Anal. Bondary Elements 27, 9–21 (2003)

    Article  MATH  Google Scholar 

  35. Balke, H., Kemmer, G., Drescher, J.: Some remarks on fracture mechanics of piezoelectric solids, In: Michel, B., Winkler, T. (eds.) In: Proceedings of the Micro Materials Conference, pp. 398–401, Micro Mat’97, Berlin (1997)

  36. Gruebner O., Kamlah M., Munz D.: Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng. Fract. Mech. 70, 1399–1413 (2003)

    Article  Google Scholar 

  37. Govorukhla V., Kamlah M.: Investigation of an interface crack with a contact zone in a piezoelectric bimatirial under limited permeable electric boundary conditions. Acta Mech. 178, 85–99 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsviatko Rangelov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangelov, T., Dineva, P. & Gross, D. On the influence of electric boundary conditions on dynamic SIFs in piezoelectric materials. Arch Appl Mech 80, 985–996 (2010). https://doi.org/10.1007/s00419-009-0354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0354-6

Keywords

Navigation