Skip to main content
Log in

Effects of protease-activated receptors (PARs) on intracellular calcium dynamics of acinar cells in rat lacrimal glands

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Protease-activated receptors (PARs) represent a novel class of seven transmembrane domain G-protein coupled receptors, which are activated by proteolytic cleavage. PARs are present in a variety of cells and have been prominently implicated in the regulation of a number of vital functions. Here, lacrimal gland acinar cell responses to PAR activation were examined, with special reference to intracellular Ca2+ concentration ([Ca2+]i) dynamics. In the present study, detection of acinar cell mRNA specific to known PAR subtypes was determined by reverse transcriptase polymerase chain reaction. Only PAR2 mRNA was detected in acinar cells of lacrimal glands. Both trypsin and a PAR2-activating peptide (PAR2-AP), SLIGRL-NH2, induced an increase in [Ca2+]i in acinar cells. The removal of extracellular Ca2+ and the use of Ca2+ channel blockers did not inhibit PAR2-AP-induced [Ca2+]i increases. Furthermore, U73122 and xestospongin C failed to inhibit PAR2-induced increases in [Ca2+]i. The origin of the calcium influx observed after activated PAR2-induced Ca2+ release from intracellular Ca2+ stores was also evaluated. The NO donor, GEA 3162, mimicked the effects of PAR2 in activating non-capacitative calcium entry (NCCE). However, both calyculin A (100 nM) and a low concentration of Gd3+ (5 μM) did not completely block the PAR2-AP-induced increase in [Ca2+]i. These findings indicated that PAR2 activation resulted primarily in Ca2+ mobilization from intracellular Ca2+ stores and that PAR2-mediated [Ca2+]i changes were mainly independent of IP3. RT-PCR indicated that TRPC 1, 3 and 6, which play a role in CCE and NCCE, are expressed in acinar cells. We suggest that PAR2-AP differentially regulates both NCCE and CCE, predominantly NCCE. Finally, our results suggested that PAR2 may function as a key receptor in calcium-related cell homeostasis under pathophysiological conditions such as tissue injury or inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, Karanjia R, Barajas-Lopez C, Vanner S, Vergnolle N, Bunnett NW (2006) Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice. J Physiol 575:555–571

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L, Yildirim E, Abramowitz J (2003) A comparison of the genes coding for canonical TRP channels and their M, V and P relatives. Cell Calcium 33:419–432

    Article  PubMed  CAS  Google Scholar 

  • Böhm SK, Kong W, Bromme D, Smeekens SP, Anderson DC, Connolly A, Kahn M, Nelken NA, Coughlin SR, Payan DG, Bunnett NW (1996) Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J 314:1009–1016

    PubMed  Google Scholar 

  • Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2 +entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16:1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Broad LM, Cannon TR, Taylor CW (1999) A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol 517:121–134

    Article  PubMed  CAS  Google Scholar 

  • Brueggemann LI, Markun DR, Barakat JA, Chen H, ByronK L (2005) Evidence against reciprocal regulation of Ca2+ entry by vasopressin in A7r5 aortic smooth muscle cells. Biochem J 388:237–244

    Article  PubMed  CAS  Google Scholar 

  • Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 97:5225–5260

    Google Scholar 

  • Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store-operated TRPC1–STIM1 channels. J Biol Chem 283:12935–12940

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strübing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    Article  PubMed  CAS  Google Scholar 

  • Cocks TM, Moffatt JD (2000) Protease-activated receptors: sentries for inflammation? Trends Pharmacol Sci 21:103–108

    Article  PubMed  CAS  Google Scholar 

  • Coughlin SR (2000) Thrombin signaling and protease-activated receptors. Nature 407:258–264

    Article  PubMed  CAS  Google Scholar 

  • Dartt DA (1994) Regulation of tear secretion. Adv Exp Med Biol 350:1–9

    Article  PubMed  CAS  Google Scholar 

  • Dartt DA (2009) Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 28:155–177

    Article  PubMed  Google Scholar 

  • Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. Neuron 34:209–220

    Article  PubMed  CAS  Google Scholar 

  • Déry O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274:C1429–C1452

    PubMed  Google Scholar 

  • Dyer JL, Liu Y, Pino de la Huerga I, Taylor CW (2005) Long-lasting inhibition of adenylyl cyclase selectively mediated by inositol 1,4,5-trisphosphate-evoked calcium release. J Biol Chem 280:8936–8944

    Article  PubMed  CAS  Google Scholar 

  • Garrido R, Segura B, Zhang W, Mulholland M (2002) Presence of functionally active protease-activated receptors 1 and 2 in myenteric glia. J Neurochem 83:556–564

    Article  PubMed  CAS  Google Scholar 

  • Gromada J, Jørgensen TD, Dissing S (1995) The release of intracellular Ca2 + in lacrimal acinar cells by a-, b-adrenergic and muscarinic cholinergic stimulation: the roles of inositol triphosphate and cyclic ADP-ribose. Pflügers Arch 429:751–756

    Article  PubMed  CAS  Google Scholar 

  • Hirano K, Kanaide H (2003) Role of protease-activated receptors in the vascular system. J Atheroscler Thromb 10:211–225

    Article  PubMed  CAS  Google Scholar 

  • Hodges RR, Dartt DA (2003) Regulatory pathways in lacrimal gland epithelium. Int Rev Cytol 231:129–196

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg MD (1999) Protease-activated receptors: PAR-4 and counting: how long is the course. Trends Pharmacol Sci 20:271–273

    Article  PubMed  CAS  Google Scholar 

  • Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279:35741–35748

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502–506

    Article  PubMed  CAS  Google Scholar 

  • Jardin I, Redondo PC, Salido GM, Rosado JA (2008) Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochim Biophys Acta 1783:84–97

    Article  PubMed  CAS  Google Scholar 

  • Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Saino T, Oikawa M, Kurosaka D, Satoh Y (2012) P2Y purinoceptors induce intra- cellular calcium dynamics of acinar cells in rat lacrimal glands. Histochem Cell Biol 137:97–106

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Kuroda R (2000) Protease-activated receptor (PAR), a novel family of G protein-coupled seven trans-membrane domain receptors: activation mechanisms and physiological roles. Jpn J Pharmacol 82:171–174

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Kuroda R, Minami T, Kataoka K, Taneda M (1998) Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br J Pharmacol 125:419–422

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Morimoto N, Nishikawa H, Kuroda R, Oda Y, Kakehi K (2000a) Activation of protease-activated receptor-2 triggers mucin secretion in the rat sublingual gland. Biochem Biophys Res Commun 270:298–302

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Nishikawa H, Kuroda R, Kawai K, Hollenberg MD (2000b) Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. Br J Pharmacol 129:1808–1814

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Kuroda R, Morimoto N, Kawao N, Masuko T, Kakehi K (2001) Lipopolysaccharide-induced subsensitivity of protease-activated receptor-2 in the mouse salivary glands in vivo. Naunyn Schmiedebergs Arch Pharmacol 364:281–284

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Kuroda R, Nishida M, Nagata N, Sakaguchi Y, Kawao N, Nishikawa H, Arizono N, Kawai K (2002) Protease-activated receptor-2 (PAR-2) in the pancreas and parotid gland: immunolocalization and involvement of nitric oxide in the evoked amylase secretion. Life Sci 71:2435–2446

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci USA 105:2895–2900

    Article  PubMed  CAS  Google Scholar 

  • Linley JE, Rose K, Patil M, Robertson B, Akopian AN, Gamper N (2008) Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception. J Neurosci 28:11240–11249

    Article  PubMed  CAS  Google Scholar 

  • Looms DK, Tritsaris K, Nauntofte B, Dissing S (2001) Nitric oxide and cGMP activate Ca2+-release processes in rat parotid acinar cells. Biochem J 355:87–95

    Article  PubMed  CAS  Google Scholar 

  • Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    PubMed  CAS  Google Scholar 

  • Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem (Tokyo) 122:498–505

    Article  CAS  Google Scholar 

  • Matsuoka H, Harada K, Ikeda T, Uetsuki K, Sata T, Warashina A, Inoue M (2009) Ca2 + pathway involved in the refilling of store sites in rat adrenal medullary cells. Am J Physiol Cell Physiol 296:C889–C899

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Saino T, Sato M, Satoh Y (2011) Role of protease activated receptors in intracellular calcium dynamics of neurons and satellite cells in rat superior cervical ganglia. Bioimages 19:17–27

    CAS  Google Scholar 

  • Moneer Z, Taylor CW (2002) Reciprocal regulation of capacitative and non-capacitative Ca2 + entry in A7r5 vascular smooth muscle cells: only the latter operates during receptor activation. Biochem J 362:13–21

    Article  PubMed  CAS  Google Scholar 

  • Moneer Z, Dyer JL, Taylor CW (2003) Nitric oxide co-ordinates the activities of the capacitative and non-capacitative Ca2+-entry pathways regulated by vasopressin. Biochem J 370:439–448

    Article  PubMed  CAS  Google Scholar 

  • Moneer Z, Pino I, Taylor EJ, Broad LM, Liu Y, Tovey SC, Staali L, Taylor CW (2005) Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells. Biochem J 389:821–829

    Article  PubMed  CAS  Google Scholar 

  • Montell C (2003) The venerable inveterate invertebrate TRP channels. Cell Calcium 33:409–417

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TD, Moody MW, Steinhoff M, Okolo C, Koh D-S, Bunnett NW (1999) Trypsin activates pancreatic duct epithelial cell ion channels. J Clin Invest 103:261–269

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa H, Kawai K, Tanaka M, Ohtani H, Tanaka S, Kitagawa C, Nishida M, Abe T, Araki H, Kawabata A (2005) Protease-activated receptor-2 (PAR-2)-related peptides induce tear secretion in rats: involvement of PAR-2 and non-PAR-2 mechanisms. J Pharmacol Exp Ther 312:324–331

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama T, Nakamura T, Obara K, Inoue H, Mishima K, Matsumoto N, Matsui M, Manabe T, Mikoshiba K, Saito I (2007) Up-regulated PAR-2-mediated salivary secretion in mice deficient in muscarinic acetylcholine receptor subtypes. J Pharmacol Exp Ther 320:516–524

    Article  PubMed  CAS  Google Scholar 

  • Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA 91:9208–9212

    Article  PubMed  CAS  Google Scholar 

  • Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (2004) The enigmatic TRPCs: multifunctional cation channels. Trends Cell Biol 14:282–286

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr, Broad LM, Braun FJ, Lievremont JP, Bird GS (2001) Mechanisms of capacitative calcium entry. J Cell Sci 114:2223–2229

    PubMed  CAS  Google Scholar 

  • Rohatgi T, Sedehizade F, Sabel BA, Reiser G (2003) Protease-activated receptor subtype expression in developing eye and adult retina of the rat after optic nerve crush. J Neurosci Res 73:246–254

    Article  PubMed  CAS  Google Scholar 

  • Satoh Y, Oomori Y, Ishikawa K, Ono K (1994) Configuration of myoepithelial cells in various exocrine glands of guinea pigs. Anat Embryol 189:227–236

    Article  PubMed  CAS  Google Scholar 

  • Satoh Y, Sano K, Habara Y, Kanno T (1997) Effects of carbachol and catecholamines on ultrastructure and intracellular calcium-ion dynamics of acinar and myoepitjelial cells of lacrimal glands. Cell Tissue Res 289:473–485

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (2004) Receptor-activated calcium entry channels— who does what, and when? Sci STKE 243:pe40

  • Taylor CW (2002) Controlling calcium entry. Cell 111:767–769

    Article  PubMed  CAS  Google Scholar 

  • Thyagarajan B, Poteser M, Romanin C, Kahr H, Zhu MX, Groschner K (2001) Expression of Trp3 determines sensitivity of capacitative Ca2+ entry to nitric oxide and as a subunit of capacitative Ca2+ entry channels. J Biol Chem 276:48149–48158

    Article  PubMed  CAS  Google Scholar 

  • Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528

    Article  PubMed  CAS  Google Scholar 

  • Vu TK, Wheaton VI, Hung DT, Charo I, Coughlin SR (1991) Domains specifying thrombin-receptor interaction. Nature 6345:674–677

    Article  Google Scholar 

  • Wang H, Wu X, Li JY, Chai BX, Wang J, Mulholland MW, Zhang W (2010) Functional protease-activated receptors in the dorsal motor nucleus of the vagus. Neurogastroenterol Motil 22(431–438):e105

    Google Scholar 

  • Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC (1998) Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 95:6642–6646

    Article  PubMed  CAS  Google Scholar 

  • Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414

    Article  PubMed  CAS  Google Scholar 

  • Yoo HY, Park SJ, Seo EY, Park KS, Han JA, Kim KS, Shin DH, Earm YE, Zhang YH, Kim SJ (2012) Role of thromboxane A2-activated nonselective cation channels in hypoxic pulmonary vasoconstriction of rat. Am J Physiol Cell Physiol 302:C307–C317

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Cong X, Shi L, Xiang B, Li YM, Ding QW, Ding C, Wu LL, Yu GY (2010) Activation of transient receptor potential vanilloid subtype 1 increases secretion of the hypofunctional, transplanted submandibular gland. Am J Physiol Gastrointest Liver Physiol 299:G54–G62

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells: evidence for a non-capacitative Ca2+ entry. J Biol Chem 273:133–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our thanks to Mr. M. Hirakawa, Department of Anatomy, for his technical assistance. This work was supported by research grants from the Ministry of Education, Culture, and Science of Japan (K.K.; 23592585) and from the Promotion and Mutual Aid Corporation for Private Schools of Japan. Some of this work was performed at the Advanced Medical Science Center of Iwate Medical University, which also provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomoyuki Saino or Katsura Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oikawa, M., Saino, T., Kimura, K. et al. Effects of protease-activated receptors (PARs) on intracellular calcium dynamics of acinar cells in rat lacrimal glands. Histochem Cell Biol 140, 463–476 (2013). https://doi.org/10.1007/s00418-013-1082-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1082-0

Keywords

Navigation