Skip to main content

Advertisement

Log in

Immunohistochemical localization of mitochondrial fatty acid β-oxidation enzymes in Müller cells of the retina

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The presence of a mitochondrial fatty acid β-oxidation system in the retina was shown by immunohistochemistry. Fatty acids are considered to serve as a major energy source metabolized by fatty acid β-oxidation together with glucose metabolized by glycolysis in the organs of the entire body, but almost nothing is known about this metabolic system in the retina. Adult rat retinae were subjected to immunofluorescence and immuno-electron microscopy for the localization of fatty acid β-oxidation enzymes, together with western blot analysis for quantitation of the amount of enzyme proteins and DNA microarray analysis for gene expression. All the enzymes examined were shown to be present in the retina, but in small amounts, with the amount of protein and gene expression in the retina being about 1/10 of those in the liver. Immunohistochemistry at light and electron microscopic levels revealed the enzymes to be more preferentially localized to the mitochondria of Müller cells than the retinal neurons. The Müller cells were isolated from the retina and confirmed for the presence of mitochondrial fatty acid β-oxidation enzymes. A mitochondrial fatty acid β-oxidation system was thus shown to be present in the retina heterogeneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). J Biol Chem 273:5678–5684

    Article  CAS  PubMed  Google Scholar 

  • Bartlett K, Eaton S (2004) Mitochondrial β-oxidation. Eur J Biochem 271:462–469

    Article  CAS  PubMed  Google Scholar 

  • Beard ME, Davies T, Holloway M, Holtzman E (1988) Peroxisomes in pigment epithelium and Müller cells of amphibian retina possess D-amino acid oxidase as well as catalase. Exp Eye Res 47:795–806

    Article  CAS  PubMed  Google Scholar 

  • Bendayan M, Roth J, Perrelet A, Orci L (1980) Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J Histochem Cytochem 28:149–160

    CAS  PubMed  Google Scholar 

  • Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27:7028–7040

    Article  CAS  PubMed  Google Scholar 

  • Cook WS, Yeldandi AV, Rao MS, Hashimoto T, Reddy JK (2000) Less extrahepatic induction of fatty acid β-oxidation enzymes by PPAR α. Biochem Biophys Res Commun 278:250–257

    Article  CAS  PubMed  Google Scholar 

  • Cox KB, Hamm DA, Millington DS, Matern D, Vockley J, Rinaldo P, Pinkert CA, Rhead WJ, Lindsey JR, Wood PA (2001) Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum Mol Genet 10:2069–2077

    Article  CAS  PubMed  Google Scholar 

  • Cullingford TE, Bhakoo KK, Peuchen S, Dolphin CT, Clark JB (1999) Regulation of the ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in astrocytes and meningeal fibroblasts. Implications in normal brain development and seizure neurophathologies. Adv Exp Med Biol 466:241–251

    Article  CAS  PubMed  Google Scholar 

  • de Duve C (1984) The mitochondria: respiration and aerobic energy retrieval. In: A guided tour of the living cell, vol 1. Scientific American, New York, pp 148–166

  • Fine BS (1963) Ganglion cells in the human retina. Arch Ophthalmol 69:83–96

    Google Scholar 

  • Fischer AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252

    Article  CAS  PubMed  Google Scholar 

  • Franze K, Grosche J, Skatchkov SN, Schinkinger S, Foja C, Schild D, Uckermann O, Travis K, Reichenbach A, Guck J (2007) Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci USA 104:8287–8292

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa M, Atsuzawa K, Mizutani K, Nakazawa A, Usuda N (2010) Immunohistochemical localization of mitochondrial fatty acid β-oxidation enzymes in rat testis. J Histochem Cytochem 52:195–206

    Article  Google Scholar 

  • Furuta S, Miyazawa S, Osumi T, Hashimoto T, Ui N (1980) Properties of mitochondria and peroxisomal enoyl-CoA hydratases from rat liver. J Biochem 88:1059–1070

    CAS  PubMed  Google Scholar 

  • Furuta S, Miyazawa S, Hashimoto T (1981) Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein. J Biochem 90:1739–1750

    CAS  PubMed  Google Scholar 

  • García M, Forster V, Hicks D, Vecino E (2002) Effects of Müller glia on cell survival and neuritogenesis in adult porcine retina in vitro. Invest Ophthalmol Vis Sci 43:3735–3743

    PubMed  Google Scholar 

  • Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P (2005) Expression of acute-phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 46:349–357

    Article  PubMed  Google Scholar 

  • Hashimoto T (1992) Peroxisomal and mitochondrial enzymes. Prog Clin Biol Res 375:19–32

    CAS  PubMed  Google Scholar 

  • Hashimoto T (1996) Peroxisomal beta-oxidation: enzymology and molecular biology. Ann N Y Acad Sci 804:86–98

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Fujita T, Usuda N, Cook W, Qi C, Peters JM, Gonzalez FJ, Yeldandi AV, Rao MS, Reddy JK (1999) Peroxisomal and mitochondrial fatty acid β-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor α and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 274:19228–19236

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Iida S, Sato Y, Nakaya A, Sawada A, Kaji N, Kamiya H, Baba Y, Harashima H (2007) DNA microarray analysis of type 2 diabetes-related genes co-regulated between white blood cells and livers of diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Biol Pharm Bull 30:763–771

    Article  CAS  PubMed  Google Scholar 

  • Hollinshead M, Sanderson J, Vaux DJ (1997) Anti-biotin antibodies offer superior organelle-specific labeling of mitochondria over avidin or streptavidin. J Histochem Cytochem 45:1053–1057

    CAS  PubMed  Google Scholar 

  • Ikeda Y, Okamura-Ikeda K, Tanaka K (1985) Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J Biol Chem 260:1311–1325

    CAS  PubMed  Google Scholar 

  • Jiang LL, Miyazawa S, Hashimoto T (1996) Purification and properties of rat d-3-hydroxyacyl-CoA dehydratase: d-3-hydroxyacyl-CoA dehydratase/d-3-hydroxyacyl-CoA dehydrogenase bifunctional protein. J Biochem 120:633–641

    CAS  PubMed  Google Scholar 

  • Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA 105:19508–19513

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DP, Kalina RE (1997) Pigmentary retinopathy in long chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Am J Ophthalmol 123:846–848

    CAS  PubMed  Google Scholar 

  • Lindqvist N, Liu Q, Zajadacz J, Franze K, Reichenbach A (2010) Retinal glial (Müller) cells: sensing and responding to tissue stretch. Invest Ophthalmol Vis Sci 51:1683–1690

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Malchow RP, Qiant H, Ripps H (1989) γ-Aminobutyric acid (GABA)-induced currents of skate Müller (glial) cells are mediated by neuronal-like GABAA receptors. Proc Natl Acad Sci USA 86:4326–4330

    Article  CAS  PubMed  Google Scholar 

  • Markwell MA, Haas SM, Tolbert NE, Bieber LL (1981) Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol 72:296–303

    Article  CAS  PubMed  Google Scholar 

  • Marszalek JR, Lodish HF (2005) Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol 21:633–657

    Article  CAS  PubMed  Google Scholar 

  • Mckenna MC, Rolf G, Sonnewald U, Waagepetersen HS, Schousboe A (2006) Energy metabolism of the brain. In: Siegel GJ (ed) Basic neurochemistry, 7th edn. Elsevier Academic Press, Burlington, pp 531–557

    Google Scholar 

  • Mitchell GA, Fukao T (2001) Inborn errors of ketone body metabolism. In: Scriver CR (ed) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2327–2356

    Google Scholar 

  • Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa S, Osumi T, Hashimoto T (1980) The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem 103:589–596

    Article  CAS  PubMed  Google Scholar 

  • Nemali MR, Usuda N, Reddy MK, Oyasu K, Hashimoto T, Osumi T, Rao MS, Reddy JK (1988) Comparison of constitutive and inducible levels of expression of peroxisomal β-oxidation and catalase genes in liver and extrahepatic tissues of rat. Cancer Res 48:5316–5324

    CAS  PubMed  Google Scholar 

  • Osumi T, Hashimoto T (1980) Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. Arch Biochem Biophys 203:372–383

    Article  CAS  PubMed  Google Scholar 

  • Osumi T, Hashimoto T, Ui N (1980) Purification and properties of acyl-CoA oxidase from rat liver. J Biochem 87:1735–1746

    CAS  PubMed  Google Scholar 

  • Qin Z, Barthel LK, Raymond PA (2009) Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. Proc Natl Acad Sci USA 106:9310–9315

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen KE (1973) A morphometric study of the Müller cells, their nuclei and mitochondria, in the rat retina. J Ultrastruct Res 44:96–112

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Hashimoto T (2001) Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu Rev Nutr 21:193–230

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A (2007) Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245:627–636

    Article  PubMed  Google Scholar 

  • Riepe RE, Norenburg MD (1977) Müller cell localisation of glutamine synthetase in rat retina. Nature 268:654–655

    Article  CAS  PubMed  Google Scholar 

  • Roe CR, Ding J (2001) Mitochondrial fatty acid oxidation disorders. In: Scriver CR (ed) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2297–2326

    Google Scholar 

  • Roomets E, Kivelä T, Tyni T (2008) Carnitine palmitoyltransferase I and acyl-CoA dehydrogenase 9 in retina: insights of retinopathy in mitochondrial trifunctional protein defects. Invest Ophthalmol Vis Sci 49:1660–1664

    Article  PubMed  Google Scholar 

  • Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671

    CAS  PubMed  Google Scholar 

  • Roth J, Taatjes DJ, Warhol MJ (1989) Prevention of non-specific interactions of gold-labeled reagents on tissue sections. Histochemistry 92:47–56

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Wang Y, Eckhardt AE, Hill RL (1994) Subcellular localization of the UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. Proc Natl Acad Sci USA 91:8935–8939

    Article  CAS  PubMed  Google Scholar 

  • Sarthy V, Ripps H (2001a) Structural organization of retinal glia. In: The retinal Müller cell, structure and function. Kluwer Academic/Plenum Publishers, New York, pp 1–34

  • Sarthy V, Ripps H (2001b) Metabolic interactions with neurons. In: The retinal Müller cell, structure and function. Kluwer Academic/Plenum Publishers, New York, pp 67–100

  • Sarthy V, Ripps H (2001c) Appendix. In: The retinal Müller cell, structure and function. Kluwer Academic/Plenum Publishers, New York, pp 217–224

  • Shepherd D, Garland PB (1969) Citrate synthase from rat liver. Methods Enzymol 13:11–16

    Article  CAS  Google Scholar 

  • Strauss AW (2005) Surprising? Perhaps not. Long-chain fatty acid oxidation during human fetal development. Pediatr Res 57:753–754

    Article  PubMed  Google Scholar 

  • Suzuki Y, Shimozawa N, Yajima S, Orii T, Yokota S, Tashiro Y, Osumi T, Hashimoto T (1992) Different intracellular localization of peroxisomal proteins in fibroblasts from patients with aberrant peroxisome assembly. Cell Struct Funct 17:1–8

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Takamiya A, Jiao JW, Cho KS, Trevino SG, Matsuda T, Chen DF (2008) α-Aminoadipate induces progenitor cell properties of Müller glia in adult mice. Invest Ophthalmol Vis Sci 49:1142–1150

    Article  PubMed  Google Scholar 

  • Tout S, Chan-Ling T, Holländer H, Stone J (1993) The role of Müller cells in the formation of the blood-retinal barrier. Neuroscience 55:291–301

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  • Trachtenberg MC, Packey DJ (1983) Rapid isolation of mammalian Müller cells. Brain Res 261:43–52

    Article  CAS  PubMed  Google Scholar 

  • Tyni T, Paetau A, Strauss AW, Middleton B, Kivelä T (2004) Mitochondrial fatty acid β-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res 56:744–750

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Izai K, Orii T, Hashimoto T (1992) Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. J Biol Chem 267:1034–1041

    CAS  PubMed  Google Scholar 

  • Usuda N, Reddy MK, Hashimoto T, Rao MS, Reddy JK (1988) Tissue specificity and species differences in the distribution of urate oxidase in peroxisomes. Lab Invest 58:100–111

    CAS  PubMed  Google Scholar 

  • Usuda N, Kong Y, Hagiwara M, Uchida C, Terasawa M, Nagata T, Hidaka H (1991a) Differential localization of protein kinase C isozymes in retinal neurons. J Cell Biol 112:1241–1247

    Article  CAS  PubMed  Google Scholar 

  • Usuda N, Yokota S, ichikawa R, Hoshimoto T, Nagata T (1991b) Immunoelectron microscopic study of a new d-amino acid oxidase-immunoreactive subcompartment in rat liver peroxisomes. J Histochem Cytochem 39:95–102

    CAS  PubMed  Google Scholar 

  • van Vlies N, Tian L, Overmars H, Bootsma AH, Kulik W, Wanders RJ, Wood PA, Vaz FM (2005) Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse. Biochem J 387:185–193

    Article  PubMed  Google Scholar 

  • Wanders RJ, Vreken P, den Boer ME, Wijburg FA, van Gennip AH, IJlst L (1999) Disorders of mitochondrial fatty acyl-CoA β-oxidation. J Inherit Metab Dis 22:442–487

    Article  CAS  PubMed  Google Scholar 

  • Wang JS, Estevez ME, Cornwall MC, Kefalov VJ (2009) Intra-retinal visual cycle required for rapid and complete cone dark adaptation. Nat Neurosci 12:295–302

    Article  CAS  PubMed  Google Scholar 

  • Wen R, Oakley B (1990) K(+)-evoked Müller cell depolarization generates b-wave of electroretinogram in toad retina. Proc Natl Acad Sci USA 87:2117–2121

    Article  CAS  PubMed  Google Scholar 

  • Williamson DH (1985) Ketone body metabolism during development. Fed Proc 44:2342–2346

    CAS  PubMed  Google Scholar 

  • Winkler BS, Arnold MJ, Brassell MA, Puro DG (2000) Energy metabolism in human retinal Müller cells. Invest Ophthalmol Vis Sci 41:3183–3190

    CAS  PubMed  Google Scholar 

  • Yokota S, Hashimoto T (1984) Innermembrane association of three mitochondrial β-oxidation enzymes revealed by immunoelectron microscopic technique. Histochemistry 80:547–552

    CAS  PubMed  Google Scholar 

  • Yokota S, Hashimoto T (1985) Inramitochondrial distribution of three acyl-CoA dehydrogenases in rat liver parenchymal cells revealed by quantitative immunoelectron microscopy. Acta Histochem Cytochem 18:49–57

    CAS  Google Scholar 

  • Yokota S, Tomioka Y, Suzuki H, Mizugaki M (1993) Immunocytochemical localization of delta 3, delta 2-enoyl-CoA isomerase and NADPH-dependent-2,4-dienoyl-CoA reductase in rat kidney. Histochemistry 99:463–469

    CAS  PubMed  Google Scholar 

  • Zhang D, Liu ZX, Choi CS, Tian L, Kibbey R, Dong J, Cline GW, Wood PA, Shulman G (2007) Mitochondrial dysfunction due to long-chain acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci USA 104:17075–17080

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Y. Kinoshita for his continuing secretarial assistance. This research was partially supported by a Grant-in-aid for young scientists (no. 20791286) for Kimie Atsuzawa and a matching fund subsidy for private universities for Nobuteru Usuda, from the Ministry of Education, Cultures, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuteru Usuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atsuzawa, K., Nakazawa, A., Mizutani, K. et al. Immunohistochemical localization of mitochondrial fatty acid β-oxidation enzymes in Müller cells of the retina. Histochem Cell Biol 134, 565–579 (2010). https://doi.org/10.1007/s00418-010-0752-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0752-4

Keywords

Navigation