Skip to main content

Advertisement

Log in

Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We evaluated the immunohistochemical distribution of three major proteoglycans of cartilage, i.e., aggrecan, versican and perlecan vis-a-vis collagens I and II in the developing human spine of first-trimester foetuses. Aggrecan and perlecan were prominently immunolocalised in the cartilaginous vertebral body rudiments and to a lesser extent within the foetal intervertebral disc. In contrast, versican was only expressed in the developing intervertebral disc interspace. Using domain-specific monoclonal antibodies against the various modules of versican, we discovered the V0 isoform as the predominant form present. Versican immunolocalisations conducted with antibodies directed to epitopes in its N and C termini and GAG-α and GAG-β core protein domains provided evidence that versican in the nucleus pulposus was either synthesised devoid of a G3 domain or this domain was proteolytically removed in situ. The V0 versican isoform was localised with prominent fibrillar components in the annular lamellae of the outer annulus fibrosus. Perlecan was a notable pericellular proteoglycan in the annulus fibrosus and nucleus pulposus but poorly immunolocalised in the marginal tissues of the developing intervertebral disc, apparently delineating the intervertebral disc–vertebral body interface region destined to become the cartilaginous endplate in the mature intervertebral disc. The distribution of collagens I and II in the foetal spine was mutually exclusive with type I present in the outer annulus fibrosus, marginal tissues around the vertebral body rudiment and throughout the developing intervertebral disc, and type II prominent in the vertebral rudiment, absent in the outer annulus fibrosus and diffusely distributed in the inner annulus fibrosus and nucleus pulposus. Collectively, our findings suggest the existence of an intricate and finely balanced interplay between various proteoglycans and collagens and the spinal cell populations which synthesise and assemble these components during spinal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abiko Y, Nishimura M, Rahemtulla F, Mizoguchi I, Kaku T (2001) Immunohistochemical localisation of large chondroitin sulphate proteoglycan in porcine gingival epithelia. Eur J Morphol 39:99–104

    Article  CAS  PubMed  Google Scholar 

  • Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354–358

    Article  CAS  PubMed  Google Scholar 

  • Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y (2001a) Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 27:431–434

    Article  CAS  PubMed  Google Scholar 

  • Arikawa-Hirasawa E, Wilcox WR, Yamada Y (2001b) Dyssegmental dysplasia, Silverman-Handmaker type: unexpected role of perlecan in cartilage development. Am J Med Genet 106:254–257

    Article  CAS  PubMed  Google Scholar 

  • Arikawa-Hirasawa E, Le AH, Nishino I, Nonaka I, Ho NC, Francomano CA, Govindraj P, Hassell JR, Devaney JM, Spranger J, Stevenson RE, Iannaccone S, Dalakas MC, Yamada Y (2002) Structural and functional mutations of the perlecan gene cause Schwartz-Jampel syndrome, with myotonic myopathy and chondrodysplasia. Am J Hum Genet 70:1368–1375

    Article  CAS  PubMed  Google Scholar 

  • Asher RA, Perides G, Vanderhaeghen J-J, Bignani A (1991) Extracellular matrix of central nervous system white matter: demonstration of an hyaluronate–protein complex. J Neurosci Res 28:410–421

    Article  CAS  PubMed  Google Scholar 

  • Asher RA, Schiebe RJ, Keiser HD, Bignami A (1995) On the existence of a cartilage like proteoglycan and link protein in the central nervous system. Glia 13:294–308

    Article  CAS  PubMed  Google Scholar 

  • Aspberg A, Adam S, Kostka G, Timpl R, Heinegard D (1999) Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 274:20444–20449

    Article  CAS  PubMed  Google Scholar 

  • Bix G, Iozzo RV (2008) Novel interactions of perlecan: unravelling perlecan’s role in angiogenesis. Microsc Res Technol 71:339–348

    Article  CAS  Google Scholar 

  • Buckwalter JA, Cooper RR, Maynard JA (1976) Elastic fibers in human intervertebral discs. J Bone Joint Surg Am 58:73–76

    CAS  PubMed  Google Scholar 

  • Buckwalter JA, Pedrini-Mille A, Pedrini V, Tudisco C (1985) Proteoglycans of human infant intervertebral disc. Electron microscopic and biochemical studies. J Bone Joint Surg Am 67:284–294

    CAS  PubMed  Google Scholar 

  • Buckwalter JA, Roughley PJ, Rosenberg LC (1994) Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microsc Res Technol 28:398–408

    Article  CAS  Google Scholar 

  • Burgeson RE, Hollister DW (1979) Collagen heterogeneity in human cartilage: identification of several new collagen chains. Biochem Biophys Res Commun 87:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Zhao M, Harris SE, Mi Z (2004a) Signal transduction and biological functions of bone morphogenetic proteins. Front Biosci 9:349–358

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004b) Bone morphogenetic proteins. Growth Factors 22:233–241

    Article  CAS  PubMed  Google Scholar 

  • Couchman JR, Ljubimov AV (1989) Mammalian tissue distribution of a large heparan sulfate proteoglycan detected by monoclonal antibodies. Matrix 9:311–321

    CAS  PubMed  Google Scholar 

  • DiPaola CP, Farmer JC, Manova K, Niswander LA (2005) Molecular signaling in intervertebral disk development. J Orthop Res 23:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Drury RAB, Wallington EA (1967) Carleton’s histological technique, 5th edn. Oxford University Press, Oxford, pp 151–190

  • Eyre DR (1979) Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res 8:227–291

    CAS  PubMed  Google Scholar 

  • Eyre DR, Muir H (1976) Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J 157:267–270

    CAS  PubMed  Google Scholar 

  • Eyre DR, Muir H (1977) Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta 492:29–42

    CAS  PubMed  Google Scholar 

  • Gotz W, Fischer G, Herken R (1991) Lectin binding pattern in the embryonal and early fetal human vertebral column. Anat Embryol (Berl) 184:345–353

    Article  CAS  Google Scholar 

  • Gruber HE, Ingram J, Leslie K, Hanley EN Jr (2008) Gene expression of types I, II, and VI collagen, aggrecan, and chondroitin-6-sulfotransferase in the human annulus: in situ hybridization findings. Spine J 8:810–817

    Article  PubMed  Google Scholar 

  • Gustafsson E, Aszodi A, Ortega N, Hunziker EB, Denker HW, Werb Z, Fassler R (2003) Role of collagen type II and perlecan in skeletal development. Ann N Y Acad Sci 995:140–150

    Article  CAS  PubMed  Google Scholar 

  • Handler M, Yurchenco PD, Iozzo RV (1997) Developmental expression of perlecan during murine embryogenesis. Dev Dyn 210:130–145

    Article  CAS  PubMed  Google Scholar 

  • Hashizume H (1980) Three-dimensional architecture and development of lumber intervertebral discs. Acta Med Okayama 34:301–314

    CAS  PubMed  Google Scholar 

  • Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20:107–121

    Article  CAS  PubMed  Google Scholar 

  • Hickey DS, Hukins DW (1980) X-ray diffraction studies of the arrangement of collagenous fibres in human fetal intervertebral disc. J Anat 131:81–90

    CAS  PubMed  Google Scholar 

  • Hickey DS, Hukins DW (1981) Collagen fibril diameters and elastic fibres in the annulus fibrosus of human fetal intervertebral disc. J Anat 133:351–357

    CAS  PubMed  Google Scholar 

  • Horiguchi Y, Couchman JR, Ljubimov AV, Yamasaki H, Fine JD (1989) Distribution, ultrastructural localization, and ontogeny of the core protein of a heparan sulfate proteoglycan in human skin and other basement membranes. J Histochem Cytochem 37:961–970

    CAS  PubMed  Google Scholar 

  • Horii-Hayashi N, Okuda H, Tatsumi K, Ishizaka S, Yoshikawa M, Wanaka A (2008) Localization of chondroitin sulfate proteoglycan versican in adult brain with special reference to large projection neurons. Cell Tissue Res 334:163–177

    Article  CAS  PubMed  Google Scholar 

  • Ilic MZ, Carter P, Tyndall A, Dudhia J, Handley CJ (2005) Proteoglycans and catabolic products of proteoglycans present in ligament. Biochem J 385:381–388

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV (1994) Perlecan: a gem of a proteoglycan. Matrix Biol 14:203–208

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 6:646–656

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV, Cohen IR, Grassel S, Murdoch AD (1994) The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302(Pt 3):625–639

    CAS  PubMed  Google Scholar 

  • Isogai Z, Aspberg A, Keene DR, Ono RN, Reinhardt DP, Sakai LY (2002) Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem 277:4565–4572

    Article  CAS  PubMed  Google Scholar 

  • Kalson NS, Richardson S, Hoyland JA (2008) Strategies for regeneration of the intervertebral disc. Regen Med 3:717–729

    Article  CAS  PubMed  Google Scholar 

  • Lebaron RG (1996) Versican. Perspect Dev Neurobiol 3:261–271

    CAS  PubMed  Google Scholar 

  • Ljubimov AV, Bartek J, Couchman JR, Kapuller LL, Veselov VV, Kovarik J, Perevoshchikov AG, Krutovskikh VA (1992) Distribution of individual components of basement membrane in human colon polyps and adenocarcinomas as revealed by monoclonal antibodies. Int J Cancer 50:562–566

    Article  CAS  PubMed  Google Scholar 

  • Margolis RU, Margolis RK (1994) Aggrecan–versican–neurocan family proteoglycans. Methods Enzymol 245:105–126

    Article  CAS  PubMed  Google Scholar 

  • Mayne R, Zettergren JG, Mayne PM, Bedwell NW (1980) Isolation and partial characterization of basement membrane-like collagens from bovine thoracic aorta. Artery 7:262–280

    CAS  PubMed  Google Scholar 

  • Mazzucato M, Cozzi MR, Pradella P, Perissinotto D, Malmstrom A, Morgelin M, Spessotto P, Colombatti A, De Marco L, Perris R (2002) Vascular PG-M/versican variants promote platelet adhesion at low shear rates and cooperate with collagens to induce aggregation. FASEB J 16:1903–1916

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Smith S, Knox S, Whitelock J (2002) Perlecan, the multidomain HS-proteoglycan of basement membranes, is a prominent pericellular component of ovine hypertrophic vertebral growth plate and cartilaginous endplate chondrocytes. Histochem Cell Biol 118:269–280

    CAS  PubMed  Google Scholar 

  • Melrose J, Smith S, Ghosh P, Whitelock J (2003) Perlecan, the multidomain heparan sulfate proteoglycan of basement membranes, is also a prominent component of the cartilaginous primordia in the developing human fetal spine. J Histochem Cytochem 51:1331–1341

    CAS  PubMed  Google Scholar 

  • Melrose J, Smith S, Whitelock J (2004) Perlecan immunolocalises to perichondral vessels and canals in human foetal cartilagenous promordia in early vascular and matrix remodelling events associated with diarthrodial-joint development. J Histochem Cytochem 52:1405–1413

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Smith S, Cake M, Read R, Whitelock J (2005a) Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol 123:561–571

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Smith S, Cake M, Read R, Whitelock J (2005b) Spatial and temporal immunolocalisation of perlecan in the ovine meniscus. Histochem Cell Biol 124:225–235

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Hayes AJ, Whitelock JM, Little CB (2008a) Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 30:457–469

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Smith SM, Little CB, Moore RJ, Vernon-Roberts B, Fraser RD (2008b) Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies. Eur Spine J 17:1131–1148

    Article  PubMed  Google Scholar 

  • Melrose J, Smith SM, Smith MM, Little CB (2008c) The use of Histochoice for histological examination of articular and growth plate cartilages, intervertebral disc and meniscus. Biotechnol Histochem 83:47–53

    Article  CAS  Google Scholar 

  • Murakami T, Wakamatsu E, Tamahashi N, Takahashi T (1985) The functional significance of human notochord in the development of vertebral column. An electron microscopic study. Tohoku J Exp Med 146:321–336

    Article  CAS  PubMed  Google Scholar 

  • Murdoch AD, Liu B, Schwarting R, Tuan RS, Iozzo RV (1994) Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem 42:239–249

    CAS  PubMed  Google Scholar 

  • Nerlich AG, Boos N, Wiest I, Aebi M (1998) Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Arch 432:67–76

    Article  CAS  PubMed  Google Scholar 

  • Olin AI, Morgelin M, Sasaki T, Timpl R, Heinegard D, Aspberg A (2001) The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem 276:1253–1261

    Article  CAS  PubMed  Google Scholar 

  • Rahmani M, Wong BW, Ang L, Cheung CC, Carthy JM, Walinski H, McManus BM (2006) Versican: signaling to transcriptional control pathways. Can J Physiol Pharmacol 84:77–92

    Article  CAS  PubMed  Google Scholar 

  • Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA (2007) Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol Histopathol 22:1033–1041

    CAS  PubMed  Google Scholar 

  • Samiric T, Ilic MZ, Handley CJ (2004) Characterisation of proteoglycans and their catabolic products in tendon and explant cultures of tendon. Matrix Biol 23:127–140

    Article  CAS  PubMed  Google Scholar 

  • Shepard JB, Krug HA, LaFoon BA, Hoffman S, Capehart AA (2007) Versican expression during synovial joint morphogenesis. Int J Biol Sci 3:380–384

    CAS  PubMed  Google Scholar 

  • Shepard JB, Gliga DA, Morrow AP, Hoffman S, Capehart AA (2008) Versican knock-down compromises chondrogenesis in the embryonic chick limb. Anat Rec (Hoboken) 291:19–27

    Google Scholar 

  • Sorensen HP, Vives RR, Manetopoulos C, Albrechtsen R, Lydolph MC, Jacobsen J, Couchman JR, Wewer UM (2008) Heparan sulfate regulates ADAM12 through a molecular switch mechanism. J Biol Chem 283:31920–31932

    Article  CAS  PubMed  Google Scholar 

  • Sztrolovics R, Grover J, Cs-Szabo G, Shi SL, Zhang Y, Mort JS, Roughley PJ (2002) The characterization of versican and its message in human articular cartilage and intervertebral disc. J Orthop Res 20:257–266

    Article  PubMed  Google Scholar 

  • Toriya N, Takuma T, Arakawa T, Abiko Y, Sasano Y, Takahashi I, Sakakura Y, Rahemtulla F, Mizoguchi I (2006) Expression and localisation of versican during postnatal development of rat temporomandibular joint disc. J Histochem Cell Biol 125:205–214

    Article  CAS  Google Scholar 

  • Tsuji H, Hirano N, Ohshima H, Ishihara H, Terahata N, Motoe T (1993) Structural variation of the anterior and posterior anulus fibrosus in the development of human lumbar intervertebral disc. A risk factor for intervertebral disc rupture. Spine 18:204–210

    Article  CAS  PubMed  Google Scholar 

  • Von Kossa J (1901) Uber die in Organismus kunstlich erzeugbaren Verkalkungen. Beitr Pathol Anat Allg Pathol 29:163–202

    Google Scholar 

  • Watanabe H, Yamada Y (2002) Chondrodysplasia of gene knockout mice for aggrecan and link protein. Glycoconj J 19:269–273

    Article  CAS  PubMed  Google Scholar 

  • Whitelock JM, Graham LD, Melrose J, Murdoch AD, Iozzo RV, Underwood PA (1999) Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol 18:163–178

    Article  CAS  PubMed  Google Scholar 

  • Whitelock JM, Melrose J, Iozzo RV (2008) Diverse cell signaling events modulated by perlecan. Biochemistry 47:11174–11183

    Article  CAS  PubMed  Google Scholar 

  • Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14:617–623

    Article  CAS  PubMed  Google Scholar 

  • Williams DR Jr, Presar AR, Richmond AT, Mjaatvedt CH, Hoffman S, Capehart AA (2005) Limb chondrogenesis is compromised in the versican deficient hdf mouse. Biochem Biophys Res Commun 334:960–966

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB (2005) The interaction of versican with its binding partners. Cell Res 15:483–494

    Article  CAS  PubMed  Google Scholar 

  • Yang BL, Zhang Y, Cao L, Yang BB (1999) Cell adhesion and proliferation mediated through the G1 domain of versican. J Cell Biochem 72:210–220

    Article  CAS  PubMed  Google Scholar 

  • Yang BL, Yang BB, Erwin M, Ang LC, Finkelstein J, Yee AJ (2003) Versican G3 domain enhances cellular adhesion and proliferation of bovine intervertebral disc cells cultured in vitro. Life Sci 73:3399–3413

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, An HS, Tannoury C, Thonar EJ, Freedman MK, Anderson DG (2008) Biological treatment for degenerative disc disease: implications for the field of physical medicine and rehabilitation. Am J Phys Med Rehabil 87:694–702

    Article  PubMed  Google Scholar 

  • Zimmermann DR (2000) Versican. In: Iozzo RV (ed) Proteoglycans—structure. biology and molecular interactions. Marcel Dekker, New York, pp 327–341

    Google Scholar 

Download references

Acknowledgments

This study was supported by NHMRC Project grant 512167. We would like to thank Prof Firoz Rahemtulla, University of Alabama, Birmingham, USA for the kind gift of the versican 5D5 Mab used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Melrose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S.M., Whitelock, J.M., Iozzo, R.V. et al. Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochem Cell Biol 132, 491–503 (2009). https://doi.org/10.1007/s00418-009-0623-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0623-z

Keywords

Navigation