Skip to main content
Log in

Involvement of cortactin and phosphotyrosine proteins in cell–cell contact formation in cultured bovine corneal endothelial cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Phosphotyrosine proteins involvement, particularly cortactin, was studied in cell–cell contacts of cultured bovine corneal endothelial (BCE) cells. These proteins, including α-catenin, vinculin and cortactin, are localized at cell–cell contacts separate from the cortical actin ring. Approximately 50% of cortactin isoforms p80 and p85 were associated with the Triton-insoluble fraction while phosphotyrosine proteins were in the soluble fraction. Disruption of cell–cell contacts by EDTA treatment was associated with a decrease in cortactin isoforms p80 (26%) and p85 (57%). Cortactin isoform p85 was phosphorylated at Y466, expressed in reattaching cells and associated with the Triton-soluble fraction, whereas cortactin isoform p80 was phosphorylated at Y421 and associated with the Triton-insoluble fraction. In sub-confluent cultures, pY421-cortactin was localized at the leading edge and pY466-cortactin at a perinuclear area. In confluent cultures both pY466- and pY421-cortactin isoforms were localized at the cell–cell contacts. In conclusion, in BCE cells, the most prominent appearance of cortactin was at the cell–cell contacts separate from the cortical actin ring. Isoform p80 was phosphorylated at Y421 and associated with the Triton-insoluble fraction and isoform p85 was phosphorylated at Y466 and associated with the Triton-insoluble fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bek S, Kemler R (2002) Protein kinase CKII regulates the interaction of beta-catenin with alpha-catenin and its protein stability. J Cell Sci 115:4743–4753

    Article  PubMed  CAS  Google Scholar 

  • Bershadsky A (2004) Magic touch: how does cell–cell adhesion trigger actin assembly? Trends Cell Biol 14:589–593

    Article  PubMed  CAS  Google Scholar 

  • Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC (1999) An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18:4440–4449

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Turner CE, Romer LH (1992) Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119:893–903

    Article  PubMed  CAS  Google Scholar 

  • Cantarelli VV, Takahashi A, Akeda Y, Nagayama K, Honda T (2000) Interaction of enteropathogenic or enterohemorrhagic Escherichia coli with HeLa cells results in translocation of cortactin to the bacterial adherence site. Infect Immun 68:382–386

    Article  PubMed  CAS  Google Scholar 

  • Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239

    Article  PubMed  CAS  Google Scholar 

  • Dardik R, Savion N, Gal N, Varon D (2002) Flow conditions modulate homocysteine induced changes in the expression of endothelial cell genes associated with cell–cell interaction and cytoskeletal rearrangement. Thromb Haemost 88:1047–1053

    PubMed  CAS  Google Scholar 

  • Dehio C, Prevost MC, Sansonetti PJ (1995) Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c-src-mediated signalling pathway. EMBO J 14:2471–2482

    PubMed  CAS  Google Scholar 

  • Du Y, Weed SA, Xiong WC, Marshall TD, Parsons JT (1998) Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol Cell Biol 18:5838–5851

    PubMed  CAS  Google Scholar 

  • Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, Garcia JG (2004) Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem 279:24692–24700

    Article  PubMed  CAS  Google Scholar 

  • Gallet C, Rosa JP, Habib A, Lebret M, Levy-Toledano S, Maclouf J (1999) Tyrosine phosphorylation of cortactin associated with Syk accompanies thromboxane analogue-induced platelet shape change. J Biol Chem 274:23610–23616

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Mescher AL, Brown KD, Birdwell CR (1977) The role of fibroblast growth factor and epidermal growth factor in the proliferative response of the corneal and lens epithelium. Exp Eye Res 25:631–649

    Article  PubMed  CAS  Google Scholar 

  • Head JA, Jiang D, Li M, Zorn LJ, Schaefer EM, Parsons JT, Weed SA (2003) Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton. Mol Biol Cell 14:3216–3229

    Article  PubMed  CAS  Google Scholar 

  • Helwani FM, Kovacs EM, Paterson AD, Verma S, Ali RG, Fanning AS, Weed SA, Yap AS (2004) Cortactin is necessary for E-cadherin-mediated contact formation and actin reorganization. J Cell Biol 164:899–910

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Ni Y, Wang T, Gao Y, Haudenschild CC, Zhan X (1997) Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem 272:13911–13915

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Asawa T, Takato T, Sakai R (2003) Cooperative roles of Fyn and cortactin in cell migration of metastatic murine melanoma. J Biol Chem 278:48367–48376

    Article  PubMed  CAS  Google Scholar 

  • Kapus A, Szaszi K, Sun J, Rizoli S, Rotstein OD (1999) Cell shrinkage regulates Src kinases and induces tyrosine phosphorylation of cortactin, independent of the osmotic regulation of Na+/H+ exchangers. J Biol Chem 274:8093–8102

    Article  PubMed  CAS  Google Scholar 

  • Kapus A, Di Ciano C, Sun J, Zhan X, Kim L, Wong TW, Rotstein OD (2000) Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell–cell contact sites. The role of Fyn and FER kinases. J Biol Chem 275:32289–32298

    Article  PubMed  CAS  Google Scholar 

  • Katsube T, Takahisa M, Ueda R, Hashimoto N, Kobayashi M, Togashi S (1998) Cortactin Associates with the cell–cell Junction Protein ZO-1 in both Drosophila and Mouse. J Biol Chem 273:29672–29677

    Article  PubMed  CAS  Google Scholar 

  • Katsube T, Togashi S, Hashimoto N, Ogiu T, Tsuji H (2004) Filamentous actin binding ability of cortactin isoforms is responsible for their cell–cell junctional localization in epithelial cells. Arch Biochem Biophys 427:79–90

    Article  PubMed  CAS  Google Scholar 

  • Kim L, Wong TW (1998) Growth factor-dependent phosphorylation of the actin-binding protein cortactin is mediated by the cytoplasmic tyrosine kinase FER. J Biol Chem 273:23542–23548

    Article  PubMed  CAS  Google Scholar 

  • Kinnunen T, Kaksonen M, Saarinen J, Kalkkinen N, Peng HB, Rauvala H (1998) Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. J Biol Chem 273:10702–10708

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Liu J, Zhan X (2000) Tyrosine phosphorylation of cortactin is required for H2O2-mediated injury of human endothelial cells. J Biol Chem 275:37187–37193

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Tondravi M, Liu J, Smith E, Haudenschild CC, Kaczmarek M, Zhan X (2001) Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res 61:6906–6911

    PubMed  CAS  Google Scholar 

  • Lopez I, Duprez V, Melle J, Dreyfus F, Levy-Toledano S, Fontenay-Roupie M (2001) Thrombopoietin stimulates cortactin translocation to the cytoskeleton independently of tyrosine phosphorylation. Biochem J 356:875–881

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS (2004) Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol 24:5269–5280

    Article  PubMed  CAS  Google Scholar 

  • Massoumi R, Sjolander A (2001) Leukotriene D(4) affects localisation of vinculin in intestinal epithelial cells via distinct tyrosine kinase and protein kinase C controlled events. J Cell Sci 114:1925–1934

    PubMed  CAS  Google Scholar 

  • Mitsumoto T, Nishimura T, Toda S, Okinami S, Oono S, Sugihara H (2001) Combined effect of extracellular matrices and growth factors on bovine corneal endothelial cells in culture. Jpn J Ophthalmol 45:115–124

    Article  PubMed  CAS  Google Scholar 

  • Mizutani K, Miki H, He H, Maruta H, Takenawa T (2002) Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res 62:669–674

    PubMed  CAS  Google Scholar 

  • Oda A, Miki H, Wada I, Yamaguchi H, Yamazaki D, Suetsugu S, Nakajima M, Nakayama A, Okawa K, Miyazaki H, Matsuno K, Ochs HD, Machesky LM, Fujita H, Takenawa T (2005) WAVE/Scars in Platelets. Blood 105:3141–3148

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran AK, Hojo M, Huima T, Rodriguez-Boulan E (1996) Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 132:451–463

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez FJ, Geiger B, Salomon D, Ben-Ze’ev A (1992) Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cell Motil Cytoskeleton 22:127–134

    Article  Google Scholar 

  • Rodriguez FJ, Geiger B, Salomon D, Ben-Ze’ev A (1993) Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. J Cell Biol 122:1285–1294

    Article  Google Scholar 

  • Roura S, Miravet S, Piedra J, Garcia DH, Dunach M (1999) Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274:36734–36740

    Article  PubMed  CAS  Google Scholar 

  • Savion N, Kredy-Farhan L (2002) Cortactin-A major phosphotyrosine protein modulated by cell–cell interaction in corneal endothelial cells. Mol Biol Cell 13(supplement):76a

    Google Scholar 

  • Savion N, Rosner M, Kredy-Farhan L (2002) Localization of cytoskeletal proteins in corneal endothelial cells. Invest Ophthalmol Vis Sci 45:ARVO E-abstract 3773

  • Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 89:5192–5196

    Article  PubMed  CAS  Google Scholar 

  • Schiwek D, Endlich N, Holzman L, Holthofer H, Kriz W, Endlich K (2004) Stable expression of nephrin and localization to cell–cell contacts in novel murine podocyte cell lines. Kidney Int 66:91–101

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi I, Takamatsu T, Price RL, Fujita S (1997) Temporal and spatial patterns of phosphotyrosine immunolocalization during cardiac myofibrillogenesis of the chicken embryo. Anat Embryol (Berl) 196:81–89

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Uruno T, Liu J, Zhang P, Fan Y, Egile C, Li R, Mueller SC, Zhan X (2001) Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 3:259–266

    Article  PubMed  CAS  Google Scholar 

  • van Damme H, Brok H, Schuuring-Scholtes E, Schuuring E (1997) The redistribution of cortactin into cell-matrix contact sites in human carcinoma cells with 11q13 amplification is associated with both overexpression and post-translational modification. J Biol Chem 272:7374–7380

    Article  PubMed  Google Scholar 

  • van Wetering S, van Buul JD, Quik S, Mul FP, Anthony EC, ten Klooster JP, Collard JG, Hordijk PL (2002) Reactive oxygen species mediate Rac-induced loss of cell–cell adhesion in primary human endothelial cells. J Cell Sci 115:1837–1846

    PubMed  Google Scholar 

  • Vidal C, Geny B, Melle J, Jandrot-Perrus M, Fontenay-Roupie M (2002) Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin. Blood 100:4462–4469

    Article  PubMed  CAS  Google Scholar 

  • Vuori K, Ruoslahti E (1995) Tyrosine phosphorylation of p130Cas and cortactin accompanies integrin-mediated cell adhesion to extracellular matrix. J Biol Chem 270:22259–22262

    Article  PubMed  CAS  Google Scholar 

  • Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, Parsons JT, Cooper JA (2001) Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol 11:370–374

    Article  PubMed  CAS  Google Scholar 

  • Weaver AM, Heuser JE, Karginov AV, Lee WL, Parsons JT, Cooper JA (2002) Interaction of cortactin and N-WASp with Arp2/3 complex. Curr Biol 12:1270–1278

    Article  PubMed  CAS  Google Scholar 

  • Weed SA, Du Y, Parsons JT (1998) Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J Cell Sci 111:2433–2443

    PubMed  CAS  Google Scholar 

  • Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons JT (2000) Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151:29–40

    Article  PubMed  CAS  Google Scholar 

  • Welsh JB, Gill GN, Rosenfeld MG, Wells A (1991) A negative feedback loop attenuates EGF-induced morphological changes. J Cell Biol 114:533–543

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT (1991) Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol 11:5113–5124

    PubMed  CAS  Google Scholar 

  • Wu H, Parsons JT (1993) Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Zhan X, Hu X, Hampton B, Burgess WH, Friesel R, Maciag T (1993) Murine cortactin is phosphorylated in response to fibroblast growth factor-1 on tyrosine residues late in the G1 phase of the BALB/c 3T3 cell cycle. J Biol Chem 268:24427–24431

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Claire and Amedee Marateir Institute for the Study of Blindness and Visual Disorders. The authors thank Yair Andegeko, Tel-Aviv University, Tel-Aviv, for his contribution to the immunofluorescence studies and to Mark Tarshis, Ph.D. The Hebrew University of Jerusalem, Jerusalem, for his devoted technical support to the confocal microscopy studies. This work was conducted in partial fulfillment of the requirements for Ph.D. degree of Lily Kredy-Farhan, Sackler faculty of medicine, Tel Aviv University, Tel Aviv, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naphtali Savion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kredy-Farhan, L., Kotev-Emeth, S. & Savion, N. Involvement of cortactin and phosphotyrosine proteins in cell–cell contact formation in cultured bovine corneal endothelial cells. Histochem Cell Biol 129, 193–202 (2008). https://doi.org/10.1007/s00418-007-0357-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0357-8

Keywords

Navigation