Skip to main content

Advertisement

Log in

Central, but not peripheral application of motilin increases c-Fos expression in hypothalamic nuclei in the rat brain

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Previous immunocytochemical studies have shown the presence of motilin-immunoreactive neurons in specific brain areas of rats and autoradiographic studies in rabbits demonstrated motilin-binding sites in the central nervous system as well. Therefore, the aim of this study was to determine the anatomical localisation and neurochemical features of neurons activated by central administration of motilin (Mo) in rats. One week after cannulation, an intracerebroventricular injection of Mo (ICV, 3 μg/6 μl 0.9% saline) was given. For comparative purposes, a group of animals received an intravenous injection of motilin (IV, 9 μg/300 μl 0.9% saline) or an equal volume of saline. Neuronal excitation was assessed by c-Fos immunocytochemistry and combined with immunostaining for neurotransmitter markers. In contrast to the IV motilin-treated animals, the ICV motilin-treated animals displayed a significant increase in c-Fos expression in the supraoptic nuclei (SO) and paraventricular nuclei of the hypothalamus (PVH). At the level of the dorsomedial, ventromedial and lateral hypothalamic nuclei, ICV administration of motilin did not induce changes in c-Fos expression. In addition, the cerebellum did not show c-Fos expression after ICV motilin administration either. These findings might suggest distinct pathways and actions of centrally released and systemic motilin, but, particularly in rodents, do not rule out the possibility that the effects seen in the SO and PVH after ICV application are aspecific in nature. At present, we cannot exclude the fact that the results observed with motilin in rodents are due to cross-interaction with other related (e.g. ghrelin) or not yet identified receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott CR, Kennedy AR, Wren AM, Rossi M, Murphy KG, Seal LJ, Todd JF, Ghatei MA, Small CJ, Bloom SR (2003) Identification of hypothalamic nuclei involved in the orexigenic effect of melanin-concentrating hormone. Endocrinology 144:3943–3949

    Google Scholar 

  • Aerssens J, Depoortere I, Thielemans L, Mitselos A, Coulie B, Peeters TL (2004) The rat lacks functional genes for motilin and for the motilin receptor. Abstract XII European Symposium on Neurogastroenterology and Motility, p 100

  • Asakawa A, Inui A, Momose K, Ueno N, Fujino MA, Kasuga M (1998) Motilin increases food intake in mice. Peptides 19:987–990

    Google Scholar 

  • Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino MA, Kasuga M (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120:337–345

    CAS  PubMed  Google Scholar 

  • Brown JC, Cook MA, Dryburgh JR (1973) Motilin, a gastric motor activity stimulating polypeptide: the complete amino acid sequence. Can J Biochem 51:533–537

    Google Scholar 

  • Dass NB, Hill J, Muir A, Testa T, Wise A, Sanger GJ (2003) The rabbit motilin receptor: molecular characterisation and pharmacology. Br J Pharmacol 140:948–954

    Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96:748–753

    Google Scholar 

  • Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128

    Google Scholar 

  • Depoortere I (2001) Motilin and motilin receptors: characterization and functional significance. Verh K Acad Geneeskd Belg 63:511–529

    Google Scholar 

  • Depoortere I, Peeters TL (1997) Demonstration and characterization of motilin-binding sites in the rabbit cerebellum. Am J Physiol Gastrointest L 35:G994-G999

    Google Scholar 

  • Depoortere I, Van Assche G, Peeters TL (1997) Distribution and subcellular localization of motilin binding sites in the rabbit brain. Brain Res 777:103–109

    Google Scholar 

  • Feighner SD, Tan CP, McKee KK, Palyha OC, Hreniuk DL, Pong SS, Austin CP, Figueroa D, MacNeil D, Cascieri MA, Nargund R, Bakshi R, Abramovitz M, Stocco R, Karman S, O’Neill G, Van der Ploeg LH, Evans J, Patchett AA, Smith RG, Howard AD (1999) Receptor for motilin identified in the human gastrointestinal system. Science 284:2184–2188

    Google Scholar 

  • Garthwaite TL (1985) Peripheral motilin administration stimulates feeding in fasted rats. Peptides 6:41–44

    Google Scholar 

  • Guan Y, Tang M, Jiang Z, Peeters TL (2003) Excitatory effects of motilin in the hippocampus on gastric motility in rats. Brain Res 984:33–41

    Google Scholar 

  • Herdegen T, Kovary K, Buhl A, Bravo R, Zimmermann M, Gass P (1995) Basal expression of the inducible transcription factors c-jun, junB, junD, c-fos, fosB, and krox-24 in the adult rat brain. J Comp Neurol 354:39–56

    Google Scholar 

  • Huang Z, Depoortere I, De Clercq P, Peeters TL (1999) Sequence and characterization of cDNA encoding the motilin precursor from chicken, dog, cow and horse. Evidence of mosaic evolution in prepromotilin. Gene 240:217–226

    Google Scholar 

  • Ida T, Nakahara K, Katayama T, Murakami N, Nakazato M (1999) Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res 821:526–529

    Google Scholar 

  • Itoh Z (1997) Motilin and clinical application. Peptides 18:593–608

    Google Scholar 

  • Jacobowitz DM, O’Donohue TL, Chey WY, Chang T-M (1981) Mapping of motilin-immunoreactive neurons of the rat brain. Peptides 2:479–487

    Google Scholar 

  • Kyrkouli SE, Stanley BG, Seirafi RD, Leibowitz SF (1990) Stimulation of feeding by galanin: anatomical localization and behavioral specificity of this peptide’s effects in the brain. Peptides 11:995–1001

    Google Scholar 

  • Lange W, Unger J, Pitzl H, Weindl A (1986) Is motilin a cerebellar peptide in the rat? A radioimmunological, chromatographic and immunohistochemical study. Anat Embryol 173:371–376

    Google Scholar 

  • Lu S, Guan JL, Wang QP, Uehara K, Yamada S, Goto N, Date Y, Nakazato M, Kojima M, Kangawa K, Shioda S (2002) Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci Lett 321:157–160

    Google Scholar 

  • Makarenko IG, Meguid MM, Gatto L, Chen C, Ugrumov MV (2003) Decreased NPY innervation of the hypothalamic nuclei in rats with cancer anorexia. Brain Res 961:100–108

    Google Scholar 

  • Melis MR, Mascia MS, Succu S, Torsello A, Muller EE, Deghenghi R, Argiolas A (2002) Ghrelin injected into the paraventricular nucleus of the hypothalamus of male rats induces feeding but not penile erection. Neurosci Lett 329:339–343

    Google Scholar 

  • Momose K, Inui A, Asakawa A, Ueno N, Nakajima M, Kasuga M (1998) Anxiolytic effect of motilin and reversal with GM-109, a motilin antagonist, in mice. Peptides 19:1739–1742

    Google Scholar 

  • Morgan JI, Curran T (1988) Calcium as a modulator of the immediate-early gene cascade in neurons. Cell 9:303–311

    Google Scholar 

  • Morley JE, Levine AS, Yim GK, Lowy MT (1983) Opioid modulation of appetite. Neurosci Biobehav Rev 7:281–305

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Nakajima A, Sekihara H, York DA, Bray GA (2002) Regulation of feeding behavior, gastric emptying, and sympathetic nerve activity to interscapular brown adipose tissue by galanin and enterostatin: the involvement of vagal-central nervous system interactions. J Gastroenterol 37:118–127

    Google Scholar 

  • Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  CAS  PubMed  Google Scholar 

  • Nilaver G, Defendini R, Zimmerman EA, Beinfield MC, O’Donohue TL (1982) Motilin in the Purkinje cell of the cerebellum. Nature 295:597–598

    Google Scholar 

  • O’Donohue TL, Beinfeld MC, Chey WY, Chang T-M, Nilaver G, Zimmerman EA, Yajima H, Adachi H, Poth M, McDevitt RP, Jacobowitz DM (1981) Identification, characterization and distribution of motilin immunoreactivity in the rat central nervous system. Peptides 2:467–477

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, New York

    Google Scholar 

  • Peeters TL (1993) Erythromycin and other macrolides as prokinetic agents. Gastroenterology 105:1886–1899

    Google Scholar 

  • Rosenfeld DJ, Garthwaite TL (1987) Central administration of motilin stimulates feeding in rats. Physiol Behav 39:753–756

    Google Scholar 

  • Rowland NE, Farnbauch LJ, Robertson KL (2003) Brain muscarinic receptor subtypes mediating water intake and Fos following cerebroventricular administration of bethanecol in rats. Psychopharmacology 167:174–179

    Google Scholar 

  • Schwartz MW, Woods SC, Porte JrD, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  • Stanley BG, Daniel DR, Chin AS, Leibowitz SF (1985) Paraventricular nucleus injections of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion. Peptides 6:1205–1211

    Google Scholar 

  • Stanley BG, Ha, LH, Spears LC, Dee MG (1993) Lateral hypothalamic injections of glutamate, kainic acid, D,L-alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid or N-methyl-D-aspartic acid rapidly elicit intense transient eating in rats. Brain Res 613:88–95

    Google Scholar 

  • Tempel DL, Leibowitz KJ, Leibowitz SF (1988) Effects of PVN galanin on macronutrient selection. Peptides 9:309–314

    Google Scholar 

  • Thielemans L, Depoortere I, Van Assche G, Bender E, Peeters TL (2001) Demonstration of a functional motilin receptor in TE671 cells from human cerebellum. Brain Res 895:119–128

    Google Scholar 

  • Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T, Guan JL, Wang OP, Funahashi H, Sakurai T, Shioda S, Matsukura S, Kangawa K, Nakazato M (2003) Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 144:1506–1512

    Google Scholar 

  • Tsukamura H, Tsukahara S, Maekawa F, Moriyama R, Reyes BA, Sakai T, Niwa Y, Foster DL (2000) Peripheral or central administration of motilin suppresses LH release in female rats: a novel role for motilin. J Neuroendocrinol 12:403–408

    Google Scholar 

  • Van der Lely AJ, Tschöp M, Heiman ML, Ghigo E (2004) Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 25:426–457

    Google Scholar 

  • Wang L, Saint-Pierre DH, Taché Y (2002) Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett 325:47–51

    Google Scholar 

  • Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DGA, Ghatei MA, Bloom SR (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Timmermans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Tang, M., Adriaensen, D. et al. Central, but not peripheral application of motilin increases c-Fos expression in hypothalamic nuclei in the rat brain. Histochem Cell Biol 123, 139–145 (2005). https://doi.org/10.1007/s00418-005-0763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0763-8

Keywords

Navigation