Skip to main content
Log in

Coordinated regulation and colocalization of αv integrin and its activating enzyme proprotein convertase PC5 in vivo

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Integrin αv is involved in intracellular–extracellular signaling important for cytoskeleton alterations and control of cell movement. In vitro experiments indicate that the integrin αv-subunit undergoes post-translational endoproteolytic cleavage. This type of activation requires the presence of suitable kexin/subtilisin-like proprotein convertases. In vitro experiments have demonstrated that, among several proprotein convertases, PC5A, and to a threefold lesser extent furin, can activate αv integrin. The biological significance of these in vitro data would be further supported by a coexpression and coordinated regulation of the gene expression of αv integrin and its activating enzyme PC5 in vivo. In the present study we investigated the regulation of αv integrin and PC5 following balloon injury in vivo. Comparative immunocytochemistry revealed a coordinated regulation of αv integrin and PC5 during vascular remodeling in rodents. Integrin αv was found to be upregulated in PCNA-positive, proliferating vascular smooth muscle cells. Northern blots revealed no significant regulation of furin mRNA, whereas PC5A mRNA increased during vascular remodeling, suggesting that PC5 is the major convertase during neointima formation in vivo. Incubation of vascular smooth muscle cells with the Golgi-disturbing agent brefeldin A inhibited αv integrin maturation, indicating that endoproteolytic cleavage occurs in the trans-Golgi network, were PC5 is localized. Thus, the present study further supports the concept that activation of αv integrin occurs in the trans-Golgi network in vascular smooth muscle cells and involves PC5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2A–C.
Fig. 3A–J.
Fig. 4. A–E

Similar content being viewed by others

References

  • Berthet V, Rigot V, Champion S, Secchi J, Fouchier F, Marvaldi J, Luis J (2000) Role of endoproteolytic processing in the adhesive and signaling functions αvβ5 intergin. J Biol Chem 275:3308–3313

    Article  Google Scholar 

  • Bie I de, Marcinkiewicz M, Malide D, Lazure C, Nakayama K, Bendayan M, Seidah NG (1996) The isoforms of the proprotein convertase PC5 are sorted to different subcellular compartments. J Cell Biol 135:1261–1275

    PubMed  Google Scholar 

  • Chamley-Campbell J, Campbell G, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    CAS  PubMed  Google Scholar 

  • Chege NW, Pfeffer SR (1990) Compartmentation of the Golgi complex: brefeldin-A distinguishes trans-Golgi cisternae from the trans-Golgi network. J Cell Biol 111:893–899

    CAS  PubMed  Google Scholar 

  • Choi ET, Engel L, Callow AD, Sun S, Trachtenberg J, Sanatoro S, Ryan US (1994) Inhibition of neointimal hyperplasia by blocking αvβ3 integrin with a small peptide antagonist GpenGRGDSPCA. J Vasc Surg 19:125–134

    CAS  PubMed  Google Scholar 

  • Delwel GO, Hogervorst F, Sonenberg A (1996) Cleavage of the α6A subunit is essential for activation of the α6Aβ1 integrin by phorbol 12-myristate 13-actetate. J Biol Chem 271:7293–7296

    CAS  PubMed  Google Scholar 

  • Dierendonck JH van, Wijsman JH, Keijzer R, Welde CJH van de, Cornelisse CJ (1991) Cell-cycle-related staining patterns of anti-proliferating cell nuclear antigen monoclonal antibodies. Am J Pathol 138:1165–1172

    PubMed  Google Scholar 

  • Drake CJ, Cheresh DA, Little CD (1995) An antagonist of integrin αvβ3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108:2655–2661

    CAS  PubMed  Google Scholar 

  • Eliceiri BP, Cheresh DA (1999) The role of αv integrins during angiogenesis: insight into potential mechanisms of action and clinical development. J Clin Invest 103:1227–1230

    PubMed  Google Scholar 

  • Felding-Habermann B, Cheresh DA (1993) Vitronectin and its receptors. Curr Opin Cell Biol 5:864–868

    CAS  PubMed  Google Scholar 

  • Harpold MM, Evans RM, Saidrt-Georgieff, Darnell JE (1979) Production of mRNA in Chinese hamster cells: relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences. Cell 17:1025–1035

    CAS  PubMed  Google Scholar 

  • Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM (1995) αvβ3 integrin expression in normal and atherosclerotic artery. Circ Res 77:1129–1135

    CAS  PubMed  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    CAS  PubMed  Google Scholar 

  • Lissitzky J-C, Luis J, Munzer JS, Benjannet S, Parat F, Chrétien M, Marvaldi J, Seidah NG (2000) Endoproteolytic processing of integrin pro-α subunits involves the redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7. Biochem J 346:133–138

    CAS  PubMed  Google Scholar 

  • Matsuno H, Stassen JM, Vermylen J, Deckmyn H (1994) Inhibition of integrin function by a cyclic RGD-containing peptide prevents neointima formation. Circulation 90:2203–2206

    CAS  PubMed  Google Scholar 

  • Nakayama K (1997) Furin: a mammalian subtilisin/kex2p-like endoprotease involved in the processing of a wide variety of precursor proteins. Biochem J 327:625–635

    CAS  PubMed  Google Scholar 

  • Orlandi A, Ehrlich HP, Ropraz P, Spagnoli LG, Gabbiani G (1994) Rat aortic smooth muscle cells isolated from different layers and at different times after endothelial denudation show distinct biological features in vitro. Arterioscler Thromb 6:982–989

    Google Scholar 

  • Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    CAS  PubMed  Google Scholar 

  • Panda D, Kundu GC, Lee BI, Peri A, Fohl D, Chackalaparampil I, Mukherjee BB, Li XD, Mukherjee DC, Seides S, Rosenberg J, Stark K, Mukherjee AB (1997) Potential roles of osteopontin and αvβ3 integrin in the development of coronary artery restenosis after angioplasty. Proc Natl Acad Sci U S A 94:9308–9313

    Article  CAS  PubMed  Google Scholar 

  • Rigot V, André F, Lehmann M, Lissitzky J-C, Marvaldi J, Luis J (1999) Biogenesis of α6β4 integrin in a human colonic adenocarcinoma cell line. Eur J Biochem 261:659–666

    Article  CAS  PubMed  Google Scholar 

  • Seidah NG, Mbikay M, Marcinkiewicz M, Chrétien M (1998) The mammalian precursor convertases: paralogs of the subtilisin/kexin family of calcium-dependent serine proteinases. In: Hook VYH (ed) Proteolytic and cellular mechanisms in prohormone and proprotein processing. Landes, Georgetown, TX, pp 49–76

  • Stawowy P, Marcinkiewicz J, Graf K, Seidah NG, Chrétien M, Fleck E, Marcinkiewicz M (2001) Selective expression of the proprotein convertases furin, PC5, and PC7 in proliferating vascular smooth muscle cells of the rat aorta in vitro. J Histochem Cytochem 49:323–333

    CAS  PubMed  Google Scholar 

  • Stawowy P, Blaschke F, Kilimnik A, Goetze S, Kallisch H, Chrétien M, Marcinkiewicz M, Fleck E, Graf K (2002) Proprotein convertase PC5 regulation by PDGF-BB involves PI3-kinase/p70s6-kinase activation in vascular smooth muscle cells. Hypertension 39:399–404

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Argraves WS, Pytela R, Arai H, Krusius T, Pierschbacher MD, Ruoslahti E (1986) cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors. Proc Natl Acad Sci U S A 83:8614–8618

    Google Scholar 

  • Wei GL, Krasinski K, Kearney M, Isner JM, Walsh K, Andrés V (1997) Temporally and spatially coordinated expression of cell cycle regulatory factors after angioplasty. Circ Res 80:418–426

    CAS  PubMed  Google Scholar 

  • Wood SA, Park JE, Brown WJ (1991) Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Cell 67:591–600

    CAS  PubMed  Google Scholar 

  • Yamada S, Brown KE, Yamada KH (1995) Differential mRNA regulation of integrin subunits αv, β1, β3, and β5 during mouse embryonic organogenesis. Cell Adhes Commun 3:311–325

    CAS  PubMed  Google Scholar 

  • Zeymer U, Fishbein MC, Forrester JS, Cercek B (1992) Proliferating cell nuclear antigen immunohistochemistry in rat aorta after balloon denudation. Comparison with thymidine and bromodeoxyuridine labeling. Am J Pathol 141:685–690

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Jadwiga Marcinkiewicz, MSc (Montréal) and Heike Kallisch, MSc (Berlin) for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Stawowy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stawowy, P., Graf, K., Goetze, S. et al. Coordinated regulation and colocalization of αv integrin and its activating enzyme proprotein convertase PC5 in vivo. Histochem Cell Biol 119, 239–245 (2003). https://doi.org/10.1007/s00418-003-0506-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0506-7

Keywords

Navigation