Skip to main content

Advertisement

Log in

Circadian rhythm, ipRGCs, and dopamine signalling in myopia

  • Mini Review
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Myopia, a common ophthalmic disorder, places a high economic burden on individuals and society. Genetic and environmental factors influence myopia progression; however, the underlying mechanisms remain unelucidated. This paper reviews recent advances in circadian rhythm, intrinsically photosensitive retinal ganglion cells (ipRGCs), and dopamine (DA) signalling in myopia and proposes the hypothesis of a circadian rhythm brain retinal circuit in myopia progression. The search of relevant English articles was conducted in the PubMed databases until June 2023. Based on the search, emerging evidence indicated that circadian rhythm was associated with myopia, including circadian genes Bmal1, Cycle, and Per. In both humans and animals, the ocular morphology and physiology show rhythmic oscillations. Theoretically, such ocular rhythms are regulated locally and indirectly via the suprachiasmatic nucleus, which receives signal from the ipRGCs. Compared with the conventional retinal ganglion cells, ipRGCs can sense the presence of light because of specific expression of melanopsin. Light, together with ipRGCs and DA signalling, plays a crucial role in both circadian rhythm and myopia. In summary, regarding myopia progression, a circadian rhythm brain retinal circuit involving ipRGCs and DA signalling has not been well established. However, based on the relationship between circadian rhythm, ipRGCs, and DA signalling in myopia, we hypothesised a circadian rhythm brain retinal circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Flitcroft DI, He M, Jonas JB et al (2019) IMI - defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci 60:M20–m30. https://doi.org/10.1167/iovs.18-25957

    Article  PubMed  PubMed Central  Google Scholar 

  2. Holden BA, Fricke TR, Wilson DA et al (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123:1036–1042. https://doi.org/10.1016/j.ophtha.2016.01.006

    Article  PubMed  Google Scholar 

  3. Baird PN, Saw SM, Lanca C et al (2020) Myopia. Nat Rev Dis Primers 6:99. https://doi.org/10.1038/s41572-020-00231-4

    Article  PubMed  Google Scholar 

  4. Haarman AEG, Enthoven CA, Tideman JWL et al (2020) The complications of myopia: a review and meta-analysis. Invest Ophthalmol Vis Sci 61:49. https://doi.org/10.1167/iovs.61.4.49

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ohno-Matsui K (2016) Pathologic myopia. Asia Pac J Ophthalmol (Phila) 5:415–423. https://doi.org/10.1097/apo.0000000000000230

    Article  CAS  PubMed  Google Scholar 

  6. Hemelings R, Elen B, Blaschko MB et al (2021) Pathological myopia classification with simultaneous lesion segmentation using deep learning. Comput Methods Programs Biomed 199:105920. https://doi.org/10.1016/j.cmpb.2020.105920

    Article  PubMed  Google Scholar 

  7. Naidoo KS, Fricke TR, Frick KD et al (2019) Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. Ophthalmology 126:338–346. https://doi.org/10.1016/j.ophtha.2018.10.029

    Article  PubMed  Google Scholar 

  8. Desrosiers J, Wanet-Defalque MC, Témisjian K et al (2009) Participation in daily activities and social roles of older adults with visual impairment. Disabil Rehabil 31:1227–1234. https://doi.org/10.1080/09638280802532456

    Article  PubMed  Google Scholar 

  9. Heine C, Browning CJ (2002) Communication and psychosocial consequences of sensory loss in older adults: overview and rehabilitation directions. Disabil Rehabil 24:763–773. https://doi.org/10.1080/09638280210129162

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Gao H, Zhu Y et al (2021) Relationship between myopia and other risk factors with anxiety and depression among Chinese university freshmen during the COVID-19 pandemic. Front Public Health 9:774237. https://doi.org/10.3389/fpubh.2021.774237

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tedja MS, Haarman AEG, Meester-Smoor MA et al (2019) IMI - myopia genetics report. Invest Ophthalmol Vis Sci 60:M89–m105. https://doi.org/10.1167/iovs.18-25965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morgan IG, Wu PC, Ostrin LA et al (2021) IMI risk factors for myopia. Invest Ophthalmol Vis Sci 62:3. https://doi.org/10.1167/iovs.62.5.3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chakraborty R, Ostrin LA, Nickla DL et al (2018) Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt 38:217–245. https://doi.org/10.1111/opo.12453

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hysi PG, Choquet H, Khawaja AP et al (2020) Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat Genet 52:401–407. https://doi.org/10.1038/s41588-020-0599-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Musolf AM, Haarman AEG, Luben RN et al (2023) Rare variant analyses across multiethnic cohorts identify novel genes for refractive error. Commun Biol 6:6. https://doi.org/10.1038/s42003-022-04323-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang P, Zhu H (2022) Light signaling and myopia development: a review. Ophthalmol Ther 11:939–957. https://doi.org/10.1007/s40123-022-00490-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu AL, Liu YF, Wang G et al (2022) The role of ipRGCs in ocular growth and myopia development. Sci Adv 8:eabm9027. https://doi.org/10.1126/sciadv.abm9027

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang J, Ouyang X, Fu H et al (2022) Advances in biomedical study of the myopia-related signaling pathways and mechanisms. Biomed Pharmacother 145:112472. https://doi.org/10.1016/j.biopha.2021.112472

    Article  CAS  PubMed  Google Scholar 

  19. Vasey C, McBride J, Penta K (2021) Circadian rhythm dysregulation and restoration: the role of melatonin. Nutrients 13. https://doi.org/10.3390/nu13103480

  20. Tähkämö L, Partonen T, Pesonen AK (2019) Systematic review of light exposure impact on human circadian rhythm. Chronobiol Int 36:151–170. https://doi.org/10.1080/07420528.2018.1527773

    Article  PubMed  Google Scholar 

  21. Hasler BP, McClung CA (2021) Delayed circadian rhythms and substance abuse: dopamine transmission’s time has come. J Clin Invest 131. https://doi.org/10.1172/jci152832

  22. Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21:67–84. https://doi.org/10.1038/s41580-019-0179-2

    Article  CAS  PubMed  Google Scholar 

  23. Siwicki KK, Eastman C, Petersen G et al (1988) Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1:141–150. https://doi.org/10.1016/0896-6273(88)90198-5

    Article  CAS  PubMed  Google Scholar 

  24. Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–540. https://doi.org/10.1038/343536a0

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Liu X, Zwiebel LJ, Hinton D et al (1992) The period gene encodes a predominantly nuclear protein in adult Drosophila. J Neurosci 12:2735–2744. https://doi.org/10.1523/jneurosci.12-07-02735.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vosshall LB, Price JL, Sehgal A et al (1994) Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263:1606–1609. https://doi.org/10.1126/science.8128247

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Sehgal A, Price JL, Man B et al (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606. https://doi.org/10.1126/science.8128246

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Allada R, White NE, So WV et al (1998) A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804. https://doi.org/10.1016/s0092-8674(00)81440-3

    Article  CAS  PubMed  Google Scholar 

  29. Rutila JE, Suri V, Le M et al (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93:805–814. https://doi.org/10.1016/s0092-8674(00)81441-5

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Rosbash M (2016) mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression. Proc Natl Acad Sci U S A 113:E2965–E2972. https://doi.org/10.1073/pnas.1605837113

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ceriani MF, Darlington TK, Staknis D et al (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285:553–556. https://doi.org/10.1126/science.285.5427.553

    Article  CAS  PubMed  Google Scholar 

  32. Koh K, Zheng X, Sehgal A (2006) JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312:1809–1812. https://doi.org/10.1126/science.1124951

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peschel N, Chen KF, Szabo G et al (2009) Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr Biol 19:241–247. https://doi.org/10.1016/j.cub.2008.12.042

    Article  CAS  PubMed  Google Scholar 

  34. Price JL, Blau J, Rothenfluh A et al (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95. https://doi.org/10.1016/s0092-8674(00)81224-6

    Article  CAS  PubMed  Google Scholar 

  35. Masuda S, Narasimamurthy R, Yoshitane H et al (2020) Mutation of a PER2 phosphodegron perturbs the circadian phosphoswitch. Proc Natl Acad Sci U S A 117:10888–10896. https://doi.org/10.1073/pnas.2000266117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim YH, Marhon SA, Zhang Y et al (2018) Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription. Science 359:1274–1277. https://doi.org/10.1126/science.aao6891

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sato TK, Panda S, Miraglia LJ et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537. https://doi.org/10.1016/j.neuron.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  38. Gachon F, Fonjallaz P, Damiola F et al (2004) The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev 18:1397–1412. https://doi.org/10.1101/gad.301404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Narasimamurthy R, Hunt SR, Lu Y et al (2018) CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch. Proc Natl Acad Sci U S A 115:5986–5991. https://doi.org/10.1073/pnas.1721076115

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ibrahim H, Reus P, Mundorf AK et al (2021) Phosphorylation of GAPVD1 is regulated by the PER complex and linked to GAPVD1 degradation. Int J Mol Sci 22. https://doi.org/10.3390/ijms22073787

  41. Patke A, Murphy PJ, Onat OE et al (2017) Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169:203–215.e213. https://doi.org/10.1016/j.cell.2017.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stone RA, Wei W, Sarfare S et al (2020) Visual image quality impacts circadian rhythm-related gene expression in retina and in choroid: a potential mechanism for ametropias. Invest Ophthalmol Vis Sci 61:13. https://doi.org/10.1167/iovs.61.5.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giarmarco MM, Brock DC, Robbings BM et al (2020) Daily mitochondrial dynamics in cone photoreceptors. Proc Natl Acad Sci U S A 117:28816–28827. https://doi.org/10.1073/pnas.2007827117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vancura P, Wolloscheck T, Baba K et al (2016) Circadian and dopaminergic regulation of fatty acid oxidation pathway genes in retina and photoreceptor cells. PLoS One 11:e0164665. https://doi.org/10.1371/journal.pone.0164665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Milićević N, Ait-Hmyed Hakkari O, Bagchi U et al (2021) Core circadian clock genes Per1 and Per2 regulate the rhythm in photoreceptor outer segment phagocytosis. Faseb j 35:e21722. https://doi.org/10.1096/fj.202100293RR

    Article  PubMed  Google Scholar 

  46. Nickla DL, Totonelly K (2016) Brief light exposure at night disrupts the circadian rhythms in eye growth and choroidal thickness in chicks. Exp Eye Res 146:189–195. https://doi.org/10.1016/j.exer.2016.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahn J, Ahn SE, Yang KS et al (2017) Effects of a high level of illumination before sleep at night on chorioretinal thickness and ocular biometry. Exp Eye Res 164:157–167. https://doi.org/10.1016/j.exer.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  48. Stone RA, McGlinn AM, Chakraborty R et al (2019) Altered ocular parameters from circadian clock gene disruptions. PLoS One 14:e0217111. https://doi.org/10.1371/journal.pone.0217111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burfield HJ, Patel NB, Ostrin LA (2018) Ocular biometric diurnal rhythms in emmetropic and myopic adults. Invest Ophthalmol Vis Sci 59:5176–5187. https://doi.org/10.1167/iovs.18-25389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nickla DL, Rucker F, Taylor CP et al (2022) Effects of morning and evening exposures to blue light of varying illuminance on ocular growth rates and ocular rhythms in chicks. Exp Eye Res 217:108963. https://doi.org/10.1016/j.exer.2022.108963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073. https://doi.org/10.1126/science.1067262

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Hattar S, Liao HW, Takao M et al (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070. https://doi.org/10.1126/science.1069609

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Güler AD, Ecker JL, Lall GS et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105. https://doi.org/10.1038/nature06829

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sondereker KB, Stabio ME, Renna JM (2020) Crosstalk: the diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol 528:2044–2067. https://doi.org/10.1002/cne.24873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chakraborty R, Landis EG, Mazade R et al (2022) Melanopsin modulates refractive development and myopia. Exp Eye Res 214:108866. https://doi.org/10.1016/j.exer.2021.108866

    Article  CAS  PubMed  Google Scholar 

  56. Zhou X, Pardue MT, Iuvone PM et al (2017) Dopamine signaling and myopia development: what are the key challenges. Prog Retin Eye Res 61:60–71. https://doi.org/10.1016/j.preteyeres.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harrison KR, Chervenak AP, Resnick SM et al (2021) Amacrine cells forming gap junctions with intrinsically photosensitive retinal ganglion cells: ipRGC types, neuromodulator contents, and connexin isoform. Invest Ophthalmol Vis Sci 62:10. https://doi.org/10.1167/iovs.62.1.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li JY, Schmidt TM (2018) Divergent projection patterns of M1 ipRGC subtypes. J Comp Neurol 526:2010–2018. https://doi.org/10.1002/cne.24469

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ecker JL, Dumitrescu ON, Wong KY et al (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60. https://doi.org/10.1016/j.neuron.2010.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baver SB, Pickard GE, Sollars PJ et al (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27:1763–1770. https://doi.org/10.1111/j.1460-9568.2008.06149.x

    Article  PubMed  Google Scholar 

  61. He X, Sankaridurg P, Wang J et al (2022) Time outdoors in reducing myopia: a school-based cluster randomized trial with objective monitoring of outdoor time and light intensity. Ophthalmology 129:1245–1254. https://doi.org/10.1016/j.ophtha.2022.06.024

    Article  PubMed  Google Scholar 

  62. Schmoll C, Lascaratos G, Dhillon B et al (2011) The role of retinal regulation of sleep in health and disease. Sleep Med Rev 15:107–113. https://doi.org/10.1016/j.smrv.2010.06.001

    Article  PubMed  Google Scholar 

  63. Bergen MA, Park HN, Chakraborty R et al (2016) Altered refractive development in mice with reduced levels of retinal dopamine. Invest Ophthalmol Vis Sci 57:4412–4419. https://doi.org/10.1167/iovs.15-17784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Landis EG, Chrenek MA, Chakraborty R et al (2020) Increased endogenous dopamine prevents myopia in mice. Exp Eye Res 193:107956. https://doi.org/10.1016/j.exer.2020.107956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang S, Yang J, Reinach PS et al (2018) Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs. Invest Ophthalmol Vis Sci 59:4441–4448. https://doi.org/10.1167/iovs.17-21574

    Article  CAS  PubMed  Google Scholar 

  66. Huang F, Wang Q, Yan T et al (2020) The role of the dopamine D2 receptor in form-deprivation myopia in mice: studies with full and partial D2 receptor agonists and knockouts. Invest Ophthalmol Vis Sci 61:47. https://doi.org/10.1167/iovs.61.6.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ralph MR, Foster RG, Davis FC et al (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978. https://doi.org/10.1126/science.2305266

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Do MTH (2019) Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104:205–226. https://doi.org/10.1016/j.neuron.2019.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Special task of the Ministry of Education of the People’s Republic of China (grant number 087280) and the Science and Technology Bureau of Quanzhou (grant number 2020CT003).

Author information

Authors and Affiliations

Authors

Contributions

LCL, SL, and JMH designed the study. LCL drafted the manuscript. LCL, YY, ZHZ, and QW critically revised the manuscript. SL and JMH supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shu Lin or Jianmin Hu.

Ethics declarations

Ethics approval

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yu, Y., Zhuang, Z. et al. Circadian rhythm, ipRGCs, and dopamine signalling in myopia. Graefes Arch Clin Exp Ophthalmol 262, 983–990 (2024). https://doi.org/10.1007/s00417-023-06276-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06276-x

Keywords

Navigation