Skip to main content

Advertisement

Log in

The use of human cornea organotypic cultures to study herpes simplex virus type 1 (HSV-1)-induced inflammation

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the utility of human organotypic cornea cultures as a model to study herpes simplex virus type 1 (HSV-1)-induced inflammation and neovascularization.

Methods

Human organotypic cornea cultures were established from corneas with an intact limbus that were retrieved from donated whole globes. One cornea culture was infected with HSV-1 (104 plaque-forming units), while the other cornea from the same donor was mock-infected. Supernatants were collected at intervals post-culture with and without infection to determine viral titer (by plaque assay) and pro-angiogenic and proinflammatory cytokine concentration by suspension array analysis. In some experiments, the cultured corneas were collected and evaluated for HSV-1 antigens by immunohistochemical means. Another set of experiments measured susceptibility of human three-dimensional cornea fibroblast constructs, in the presence and absence of TGF-β1, to HSV-1 infection in terms of viral replication and the inflammatory response to infection as a comparison to the organotypic cornea cultures.

Results

Organotypic cornea cultures and three-dimensional fibroblast constructs exhibited varying degrees of susceptibility to HSV-1. Fibroblast constructs were more susceptible to infection in terms of infectious virus recovered in a shorter period of time. There were changes in the levels of select pro-angiogenic or proinflammatory cytokines that were dictated as much by the cultures producing them as by whether they were infected with HSV-1 or treated with TGF-β1.

Conclusion

Organotypic cornea and three-dimensional fibroblast cultures are likely useful for the identification and short-term study of novel antiviral compounds and virus replication, but are limited in the study of the local immune response to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, Berman SM, Markowitz LE (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296(8):964–973

    Article  CAS  PubMed  Google Scholar 

  2. Liesegang TJ, Melton LJ III, Daly PJ, Ilstrup DM (1989) Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982. Arch Ophthalmol 107(8):1155–1159

    Article  CAS  PubMed  Google Scholar 

  3. Young RC, Hodge DO, Liesegang TJ, Baratz KH (2010) Incidence, recurrence, and outcomes of herpes simplex virus eye disease in Olmsted County, Minnesota, 1976–2007: the effect of oral antiviral prophylaxis. Arch Ophthalmol 128(9):1178–1183

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dubord PJ, Evans GD, Macsai MS, Mannis MJ, Glasser DB, Strong DM, Noel L, Fehily D (2013) Eye banking and corneal transplantation communicable adverse incidents: current status and project NOTIFY. Cornea 32(8):1155–1166

    Article  PubMed  Google Scholar 

  5. Remeijer L, Duan R, van Dun JM, Wefers Bettink MA, Osterhaus AD, Verjans GM (2009) Prevalence and clinical consequences of herpes simplex virus type 1 DNA in human cornea tissues. J Infect Dis 200(1):11–19

    Article  PubMed  Google Scholar 

  6. Borderie VM, Meritet JF, Chaumeil C, Rozenberg F, Baudrimont M, Touzeau O, Bourcier T, Laroche L (2004) Culture-proven herpetic keratitis after penetrating keratoplasty in patients with no previous history of herpes disease. Cornea 23(2):118–124

    Article  PubMed  Google Scholar 

  7. Richter ER, Dias JK, Gilbert JE, Atherton SS (2009) Distribution of herpes simplex virus type 1 and varicella zoster virus in ganglia of the human head and neck. J Infect Dis 200(12):1901–1906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Alekseev O, Tran AH, Azizkhan-Clifford J (2012) Ex vivo organotypic corneal model of acute epithelial herpes simplex virus type I infection. J Vis Exp 69, e3631

    PubMed  Google Scholar 

  9. Bryant-Hudson K, Conrady CD, Carr DJ (2013) Type I interferon and lymphangiogenesis in the HSV-1 infected cornea - are they beneficial to the host? Prog Retin Eye Res 36:281–291

    Article  CAS  PubMed  Google Scholar 

  10. Karamichos D, Lakshman N, Petroll WM (2009) An experimental model for assessing fibroblast migration in 3-D collagen matrices. Cell Motil Cytoskeleton 66(1):1–9

    Article  PubMed Central  PubMed  Google Scholar 

  11. Karamichos D, Guo XQ, Hutcheon AE, Zieske JD (2010) Human corneal fibrosis: an in vitro model. Invest Ophthalmol Vis Sci 51(3):1382–1388

    Article  PubMed Central  PubMed  Google Scholar 

  12. Karamichos D, Zareian R, Guo X, Hutcheon AE, Ruberti JW, Zieske JD (2012) Novel Model for Keratoconus Disease. J Funct Biomater 3(4):760–775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Austin BA, Halford WP, Williams BR, Carr DJ (2007) Oligoadenylate synthetase/protein kinase R pathways and alphabeta TCR+ T cells are required for adenovirus vector: IFN-gamma inhibition of herpes simplex virus-1 in cornea. J Immunol 178(8):5166–5172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Carr DJ, Chodosh J, Ash J, Lane TE (2003) Effect of anti-CXCL10 monoclonal antibody on herpes simplex virus type 1 keratitis and retinal infection. J Virol 77(18):10037–10046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. He J, Ichimura H, Iida T, Minami M, Kobayashi K, Kita M, Sotozono C, Tagawa YI, Iwakura Y, Imanishi J (1999) Kinetics of cytokine production in the cornea and trigeminal ganglion of C57BL/6 mice after corneal HSV-1 infection. J Interferon Cytokine Res 19(6):609–615

    Article  CAS  PubMed  Google Scholar 

  16. Staats HF, Lausch RN (1993) Cytokine expression in vivo during murine herpetic stromal keratitis. Effect of protective antibody therapy. J Immunol 151(1):277–283

    CAS  PubMed  Google Scholar 

  17. Stumpf TH, Case R, Shimeld C, Easty DL, Hill TJ (2002) Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. J Gen Virol 83(Pt 7):1579–1590

    Article  CAS  PubMed  Google Scholar 

  18. Wuest T, Zheng M, Efstathiou S, Halford WP, Carr DJ (2011) The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization. PLoS Pathog 7(10), e1002278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yao HW, Chen SH, Li C, Tung YY, Chen SH (2012) Suppression of transcription factor early growth response 1 reduces herpes simplex virus 1-induced corneal disease in mice. J Virol 86(16):8559–8567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Karamichos D, Hutcheon AE, Zieske JD (2014) Reversal of fibrosis by TGF-beta3 in a 3D in vitro model. Exp Eye Res 12431–36

  21. Wuest T, Farber J, Luster A, Carr DJ (2006) CD4+ T cell migration into the cornea is reduced in CXCL9 deficient but not CXCL10 deficient mice following herpes simplex virus type 1 infection. Cell Immunol 243(2):83–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yuen D, Grimaldo S, Sessa R, Ecoiffier T, Truong T, Huang E, Bernas M, Daley S, Witte M, Chen L (2014) Role of angiopoietin-2 in corneal lymphangiogenesis. Invest Ophthalmol Vis Sci 55(5):3320–3327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bryant-Hudson KM, Chucair-Elliott AJ, Conrady CD, Cohen A, Zheng M, Carr DJ (2013) HSV-1 targets lymphatic vessels in the eye and draining lymph node of mice leading to edema in the absence of a functional type I interferon response. Am J Pathol 183(4):1233–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Knickelbein JE, Buela KA, Hendricks RL (2014) Antigen-presenting cells are stratified within normal human corneas and are rapidly mobilized during ex vivo viral infection. Invest Ophthalmol Vis Sci 55(2):1118–1123

    Article  PubMed Central  PubMed  Google Scholar 

  25. Taylor PR, Roy S, Leal SM Jr, Sun Y, Howell SJ, Cobb BA, Li X, Pearlman E (2014) Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nat Immunol 15(2):143–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Klein RS, Izikson L, Means T, Gibson HD, Lin E, Sobel RA, Weiner HL, Luster AD (2004) IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. J Immunol 172(1):550–559

    Article  CAS  PubMed  Google Scholar 

  27. Anthoni M, Fyhrquist N, Lehtimaki S, Alenius H, Wolff H, Lauerma A (2010) Smad3 regulates dermal cytokine and chemokine expression and specific antibody production in murine responses to a respiratory chemical sensitizer. Int Arch Allergy Immunol 151(2):155–167

    Article  CAS  PubMed  Google Scholar 

  28. Elias JA, Lentz V, Cummings PJ (1991) Transforming growth factor-beta regulation of IL-6 production by unstimulated and IL-1-stimulated human fibroblasts. J Immunol 146(10):3437–3443

    CAS  PubMed  Google Scholar 

  29. Mungunsukh O, Day RM (2013) Transforming growth factor-beta1 selectively inhibits hepatocyte growth factor expression via a micro-RNA-199-dependent posttranscriptional mechanism. Mol Biol Cell 24(13):2088–2097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Naim R, Chang RC, Alfano SS, Riedel F, Bayerl C, Sadick H, Bran G, Hormann K (2005) Targeting TGF-beta1 increases hepatocyte growth factor (HGF/SF) levels in external auditory canal cholesteatoma (EACC) epithelial cell culture. Regul Pept 130(1–2):75–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Akhee Sarkernag, Min Zheng, and Meghan Carr for their technical help in establishing/maintaining cultures and in the analysis of data included in this paper. This work was supported by NIH R01 EY021238-05 (DJJC), NEI R01 EY023568-02 (DK), an unrestricted grant from Research to Prevent Blindness, and NEI core grant EY021725.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. J. Carr.

Additional information

Peter Drevets and Ana Chucair-Elliott are co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drevets, P., Chucair-Elliott, A., Shrestha, P. et al. The use of human cornea organotypic cultures to study herpes simplex virus type 1 (HSV-1)-induced inflammation. Graefes Arch Clin Exp Ophthalmol 253, 1721–1728 (2015). https://doi.org/10.1007/s00417-015-3073-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3073-4

Keywords

Navigation