Skip to main content

Advertisement

Log in

Four-year to seven-year outcomes of advanced surface ablation with excimer laser for high myopia

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to evaluate and compare outcomes after photorefractive keratectomy with cooling (cPRK) and laser-assisted subepithelial keratectomy (LASEK) for high myopia.

Methods

This was a retrospective, single-masked follow-up study of patients treated for myopia between 2007 and 2009 with cPRK or LASEK, using a high-frequency flying-spot excimer laser with eye-tracker (MEL80; Carl Zeiss, Jena, Germany). One eye of each patient was randomly chosen for analysis. Re-treated eyes were excluded.

Results

Forty-six cPRK patients and 35 LASEK patients were included. Spherical equivalent averaged −7.69 ± 1.47 diopters (D) in cPRK eyes and −7.98 ± 2.06 D in LASEK eyes (p = 0.31) before surgery. The average follow-up time was 4.6 years in cPRK patients and 6.0 years in LASEK patients (p < 0.05). At final follow-up, no cPRK eyes and one LASEK eye (p = 0.46) had lost two lines of corrected distance visual acuity (CDVA). No eyes had significant haze at final follow-up, although trace haze was found in four cPRK eyes and six LASEK eyes (p = 0.44). However, at 6 weeks after surgery, zero cPRK eyes and nine LASEK eyes (p < 0.05) had significant haze. At final follow-up, 63 % of cPRK eyes and 35 % of LASEK eyes (p = 0.17) were within ±1.0 D of intended refraction. Finally, 100 % of cPRK patients and 92 % of LASEK patients (p = 0.87) were satisfied or very satisfied with the surgery at final follow-up.

Conclusion

cPRK and LASEK seemed safe and with high patient satisfaction 4 to 7 years after surgery for high myopia. However, cPRK was more effective than LASEK in reducing initial significant corneal haze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Solomon KD, Fernandez de Castro LE, Sandoval HP et al (2009) LASIK world literature review: quality of life and patient satisfaction. Ophthalmol 116(4):691–701

    Article  Google Scholar 

  2. Shortt AJ, Allan BD, Evans JR (2013) Laser-assisted in-situ keratomileusis (LASIK) versus photorefractive keratectomy (PRK) for myopia. Cochrane Database Syst Rev 1:Cd005135. doi:10.1002/14651858.CD005135.pub3

  3. Zhao LQ, Wei RL, Cheng JW, Li Y, Cai JP, Ma XY (2010) Meta-analysis: clinical outcomes of laser-assisted subepithelial keratectomy and photorefractive keratectomy in myopia. Ophthalmol 117(10):1912–1922

    Article  Google Scholar 

  4. Ivarsen A, Hjortdal J (2014) Topography-guided photorefractive keratectomy for irregular astigmatism after small incision lenticule extraction. J Refract Surg 30(6):429–432

    Article  PubMed  Google Scholar 

  5. Taneri S, Weisberg M, Azar DT (2011) Surface ablation techniques. J Cataract Refract Surg 37(2):392–408

    Article  PubMed  Google Scholar 

  6. Ambrosio R Jr, Wilson S (2003) LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol 18(1):2–10

    Article  PubMed  Google Scholar 

  7. Woreta FA, Gupta A, Hochstetler B, Bower KS (2013) Management of post-photorefractive keratectomy pain. Surv Ophthalmol 58(6):529–535

    Article  PubMed  Google Scholar 

  8. Alio JL, Artola A, Claramonte PJ, Ayala MJ, Sanchez SP (1998) Complications of photorefractive keratectomy for myopia: two year follow-up of 3000 cases. J Cataract Refract Surg 24(5):619–626

    Article  CAS  PubMed  Google Scholar 

  9. Sakimoto T, Rosenblatt MI, Azar DT (2006) Laser eye surgery for refractive errors. Lancet 367(9520):1432–1447

    Article  PubMed  Google Scholar 

  10. Kitazawa Y, Maekawa E, Sasaki S, Tokoro T, Mochizuki M, Ito S (1999) Cooling effect on excimer laser photorefractive keratectomy. J Cataract Refract Surg 25(10):1349–1355

    Article  CAS  PubMed  Google Scholar 

  11. Amoils SP (2000) Photorefractive keratectomy using a scanning-slit laser, rotary epithelial brush, and chilled balanced salt solution. J Cataract Refract Surg 26(11):1596–1604

    Article  CAS  PubMed  Google Scholar 

  12. Autrata R, Rehurek J (2003) Laser-assisted subepithelial keratectomy for myopia: two-year follow-up. J Cataract Refract Surg 29(4):661–668

    Article  PubMed  Google Scholar 

  13. Sia RK, Ryan DS, Edwards JD, Stutzman RD, Bower KS (2014) The U.S. Army surface ablation study: comparison of PRK, MMC-PRK, and LASEK in moderate to high myopia. J Refract Surg 30(4):256–264

    Article  PubMed  Google Scholar 

  14. Lee JB, Seong GJ, Lee JH, Seo KY, Lee YG, Kim EK (2001) Comparison of laser epithelial keratomileusis and photorefractive keratectomy for low to moderate myopia. J Cataract Refract Surg 27(4):565–570

    Article  CAS  PubMed  Google Scholar 

  15. Chen SH, Feng YF, Stojanovic A, Wang QM (2011) Meta-analysis of clinical outcomes comparing surface ablation for correction of myopia with and without 0.02 % mitomycin C. J Refract Surg 27(7):530–541

    Article  CAS  PubMed  Google Scholar 

  16. Stein HA, Salim AG, Stein RM, Cheskes A (1999) Corneal cooling and rehydration during photorefractive keratectomy to reduce postoperative corneal haze. J Refract Surg 15(2 Suppl):S232–S233

    CAS  PubMed  Google Scholar 

  17. Trattler WB, Barnes SD (2008) Current trends in advanced surface ablation. Curr Opin Ophthalmol 19(4):330–334

    Article  PubMed  Google Scholar 

  18. Vestergaard AH, Hjortdal JO, Ivarsen A, Work K, Grauslund J, Sjolie AK (2013) Long-term outcomes of photorefractive keratectomy for low to high myopia: 13 to 19 years of follow-up. J Refract Surg 29(5):312–319

    Article  PubMed  Google Scholar 

  19. Alio JL, Muftuoglu O, Ortiz D et al (2008) Ten-year follow-up of photorefractive keratectomy for myopia of more than −6 diopters. Am J Ophthalmol 145(1):37–45

    Article  PubMed  Google Scholar 

  20. Yuksel N, Bilgihan K, Hondur AM, Yildiz B, Yuksel E (2014) Long term results of Epi-LASIK and LASEK for myopia. Cont Lens Anterior Eye 37(3):132–135

    Article  PubMed  Google Scholar 

  21. Holladay JT (2004) Visual acuity measurements. J Cataract Refract Surg 30(2):287–290

    Article  PubMed  Google Scholar 

  22. Fantes FE, Hanna KD, Waring GO, Pouliquen Y, Thompson KP, Savoldelli M (1990) Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol 108(5):665–675

    Article  CAS  PubMed  Google Scholar 

  23. McGhee CN, Orr D, Kidd B, Stark C, Bryce IG, Anastas CN (1996) Psychological aspects of excimer laser surgery for myopia: reasons for seeking treatment and patient satisfaction. Br J Ophthalmol 80(10):874–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Taneri S, Zieske JD, Azar DT (2004) Evolution, techniques, clinical outcomes, and pathophysiology of LASEK: review of the literature. Surv Ophthalmol 49(6):576–602

    Article  PubMed  Google Scholar 

  25. Aydin B, Cagil N, Erdogan S, Erdurmus M, Hasiripi H (2008) Effectiveness of laser-assisted subepithelial keratectomy without mitomycin-C for the treatment of high myopia. J Cataract Refract Surg 34(8):1280–1287

    Article  PubMed  Google Scholar 

  26. Ivarsen A, Hjortdal J (2012) Seven-year changes in corneal power and aberrations after PRK or LASIK. Invest Ophthalmol Vis Sci 53(10):6011–6016

    Article  PubMed  Google Scholar 

  27. Neuffer MC, Khalifa YM, Moshirfar M, Miffin MD (2013) Prospective comparison of chilled versus room temperature saline irrigation in alcohol-assisted photorefractive keratectomy. Nepal J Ophthalmol 5(10):154–160

    CAS  PubMed  Google Scholar 

  28. Takacs AI, Mihaltz K, Nagy ZZ (2011) Corneal density with the Pentacam after photorefractive keratectomy. J Refract Surg 27(4):269–277

    Article  PubMed  Google Scholar 

  29. O’Doherty M, O’Keeffe M, Kelleher C (2006) Five year follow up of laser in situ keratomileusis for all levels of myopia. Br J Ophthalmol 90(1):20–23

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kato N, Toda I, Hori-Komai Y, Sakai C, Tsubota K (2008) Five-year outcome of LASIK for myopia. Ophthalmol 115:839–844, e832

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Odense University Hospital Research Foundation, the Synoptik Foundation, Goldsmith A. L. & D. Rasmussen’s Foundation, and Ingemann O. Buck’s Foundation.

Conflict of interest

The authors have no financial or proprietary interest in the materials presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Søgaard Hansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, R.S., Lyhne, N., Grauslund, J. et al. Four-year to seven-year outcomes of advanced surface ablation with excimer laser for high myopia. Graefes Arch Clin Exp Ophthalmol 253, 1027–1033 (2015). https://doi.org/10.1007/s00417-014-2920-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2920-z

Keywords

Navigation