Skip to main content

Advertisement

Log in

Co-expression of endothelial and neuronal nitric oxide synthases in the developing vasculatures of the human fetal eye

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Nitric oxide (NO) is a multifunctional gaseous molecule that regulates various physiological functions in both neuronal and non-neuronal cells. NO is synthesized by nitric oxide synthases (NOSs), of which three isoforms have been identified. Neuronal NOS (nNOS) and endothelial NOS (eNOS) constitutively produce low levels of NO as a cell-signaling molecule in response to an increase in intracellular calcium concentration. Recent data have revealed a predominant role of eNOS in both angiogenesis and vasculogenesis.

Methods

The immunohistochemical localization of nNOS and eNOS was investigated during embryonic and fetal ocular vascular development from 7 to 21 weeks gestation (WG) on sections of cryopreserved tissue.

Results

eNOS was confined to endothelial cells of developing vessels at all ages studied. nNOS was prominent in nuclei of vascular endothelial and smooth muscle cells in the fetal vasculature of vitreous and choriocapillaris. nNOS was also prominent in the nuclei of CXCR4+ progenitors in the inner retina and inner neuroblastic layer.

Conclusions

These findings demonstrate co-expression of n- and eNOS isoforms in different compartments of vasoformative cells during development. Nuclear nNOS was present in vascular and nonvascular progenitors as well as endothelial cells and pericytes. This suggests that nNOS may play a role in the transcription regulatory systems in endothelial cells and pericytes during ocular hemo-vasculogenesis, vasculogenesis, and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  2. Moncada S (1999) Nitric oxide: discovery and impact on clinical medicine. J R Soc Med 92:164–169

    PubMed  CAS  Google Scholar 

  3. Bhutto IA, Baba T, Merges C, McLeod DS, Lutty GA (2010) Low nitric oxide synthases (NOS) in eyes with age-related macular degeneration (AMD). Exp Eye Res 90:155–67

    Google Scholar 

  4. Neufeld AH, Shareef S, Pena J (2000) Cellular localization of neuronal nitric oxide synthase (NOS-1) in the human and rat retina. J Comp Neurol 416:269–275

    Article  PubMed  CAS  Google Scholar 

  5. Giove TJ, Deshpande MM, Eldred WD (2009) Identification of alternate transcripts of neuronal nitric oxide synthase in the mouse retina. J Neurosci Res 87:3134–3142

    Article  PubMed  CAS  Google Scholar 

  6. Duda DG, Fukumura D, Jain RK (2004) Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med 10:143–145

    Article  PubMed  CAS  Google Scholar 

  7. Fukumura D, Jain RK (1998) Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev 17:77–89

    Article  PubMed  CAS  Google Scholar 

  8. Kashiwagi S, Izumi Y, Gohongi T, Demou ZN, Xu L, Huang PL, Buerk DG, Munn LL, Jain RK, Fukumura D (2005) NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest 115:1816–1827

    Article  PubMed  CAS  Google Scholar 

  9. Kashiwagi S, Tsukada K, Xu L, Miyazaki J, Kozin SV, Tyrrell JA, Sessa WC, Gerweck LE, Jain RK, Fukumura D (2008) Perivascular nitric oxide gradients normalize tumor vasculature. Nat Med 14:255–257

    Article  PubMed  CAS  Google Scholar 

  10. Hasegawa T, McLeod DS, Bhutto IA, Prow T, Merges CA, Grebe R, Lutty GA (2007) The embryonic human choriocapillaris develops by hemo-vasculogenesis. Dev Dyn 236:2089–2100

    Article  PubMed  Google Scholar 

  11. Lutty GA, Hasegawa T, Baba T, Grebe R, Bhutto I, McLeod DS (2010) Development of the human choriocapillaris. Eye (Lond) 24:408–415

    Article  CAS  Google Scholar 

  12. Hasegawa T, McLeod DS, Prow T, Merges C, Grebe R, Lutty GA (2008) Vascular precursors in developing human retina. Investig Ophthalmol Vis Sci 49:2178–2192

    Article  Google Scholar 

  13. McLeod DS, Hasegawa T, Prow T, Merges C, Lutty G (2006) The initial fetal human retinal vasculature develops by vasculogenesis. Dev Dyn 235:3336–3347

    Article  PubMed  CAS  Google Scholar 

  14. Bachetti T, Comini L, Curello S, Bastianon D, Palmieri M, Bresciani G, Callea F, Ferrari R (2004) Co-expression and modulation of neuronal and endothelial nitric oxide synthase in human endothelial cells. J Mol Cell Cardiol 37:939–945

    Article  PubMed  CAS  Google Scholar 

  15. Morishita T, Tsutsui M, Shimokawa H, Horiuchi M, Tanimoto A, Suda O, Tasaki H, Huang PL, Sasaguri Y, Yanagihara N, Nakashima Y (2002) Vasculoprotective roles of neuronal nitric oxide synthase. FASEB J 16:1994–1996

    PubMed  CAS  Google Scholar 

  16. Al-Shabrawey M, El-Remessy A, Gu X, Brooks SS, Hamed MS, Huang P, Caldwell RB (2003) Normal vascular development in mice deficient in endothelial NO synthase: possible role of neuronal NO synthase. Mol Vis 9:549–558

    PubMed  CAS  Google Scholar 

  17. Wei G, Dawson VL, Zweier JL (1999) Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. Biochim Biophys Acta 1455:23–34

    PubMed  CAS  Google Scholar 

  18. Kavdia M, Popel AS (2004) Contribution of nNOS- and eNOS-derived NO to microvascular smooth muscle NO exposure. J Appl Physiol 97:293–301

    Article  PubMed  CAS  Google Scholar 

  19. Babaei S, Teichert-Kuliszewska K, Monge JC, Mohamed F, Bendeck MP, Stewart DJ (1998) Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res 82:1007–1015

    PubMed  CAS  Google Scholar 

  20. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98:2604–2609

    Article  PubMed  CAS  Google Scholar 

  21. Baba T, McLeod DM, Edwards MM, Merges C, Sen T, Sinha D, Lutty GA (2012) VEGF165b in the developing vasculatures of the fetal human eye. Dev Dyn 241:595–607

    Google Scholar 

  22. Giordano A, Tonello C, Bulbarelli A, Cozzi V, Cinti S, Carruba MO, Nisoli E (2002) Evidence for a functional nitric oxide synthase system in brown adipocyte nucleus. FEBS Lett 514:135–140

    Article  PubMed  CAS  Google Scholar 

  23. Gobeil F Jr, Zhu T, Brault S, Geha A, Vazquez-Tello A, Fortier A, Barbaz D, Checchin D, Hou X, Nader M, Bkaily G, Gratton JP, Heveker N, Ribeiro-da-Silva A, Peri K, Bard H, Chorvatova A, D'Orleans-Juste P, Goetzl EJ, Chemtob S (2006) Nitric oxide signaling via nuclearized endothelial nitric-oxide synthase modulates expression of the immediate early genes iNOS and mPGES-1. J Biol Chem 281:16058–16067

    Article  PubMed  CAS  Google Scholar 

  24. Majano P, Lara-Pezzi E, Lopez-Cabrera M, Apolinario A, Moreno-Otero R, Garcia-Monzon C (2001) Hepatitis B virus X protein transactivates inducible nitric oxide synthase gene promoter through the proximal nuclear factor kappaB-binding site: evidence that cytoplasmic location of X protein is essential for gene transactivation. Hepatology 34:1218–1224

    Article  PubMed  CAS  Google Scholar 

  25. Yuan Z, Liu B, Yuan L, Zhang Y, Dong X, Lu J (2004) Evidence of nuclear localization of neuronal nitric oxide synthase in cultured astrocytes of rats. Life Sci 74:3199–3209

    Article  PubMed  CAS  Google Scholar 

  26. Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20:223–230

    Article  PubMed  CAS  Google Scholar 

  27. Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB (1999) VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun 256:192–197

    Article  PubMed  CAS  Google Scholar 

  28. Kone BC, Kuncewicz T, Zhang W, Yu ZY (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol Renal Physiol 285:F178–F190

    PubMed  CAS  Google Scholar 

  29. Guthrie SM, Curtis LM, Mames RN, Simon GG, Grant MB, Scott EW (2005) The nitric oxide pathway modulates hemangioblast activity of adult hematopoietic stem cells. Blood 105:1916–1922

    Article  PubMed  CAS  Google Scholar 

  30. Krasnov P, Michurina T, Packer MA, Stasiv Y, Nakaya N, Moore KA, Drazan KE, Enikolopov G (2008) Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis. Mol Med 14:141–149

    Article  PubMed  CAS  Google Scholar 

  31. North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM, Weber GJ, Harris J, Cutting CC, Huang P, Dzierzak E, Zon LI (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137:736–748

    Article  PubMed  CAS  Google Scholar 

  32. Balazs EA, Toth LZ, Ozanics V (1980) Cytological studies on the development of vitreous as related to the hyaloid vessel system. Albrecht Von Graefes Arch Clin Exp Ophthalmol 213:71–85

    Article  CAS  Google Scholar 

  33. Goldberg MF (1997) Persistent fetal vasculature (PFV): an integrated interpretation of signs and symptoms associated with persistent hyperplastic primary vitreous (PHPV). LIV Edward Jackson Memorial Lecture. Am J Ophthalmol 124:587–626

    PubMed  CAS  Google Scholar 

  34. Zhu M, Madigan MC, van Driel D, Maslim J, Billson FA, Provis JM, Penfold PL (2000) The human hyaloid system: cell death and vascular regression. Exp Eye Res 70:767–776

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard A. Lutty.

Additional information

Grant support

NIH grants: EY-01765 (Wilmer), RO1-EY09357 (GL), and R01-EY016151 (GL), Research to Prevent Blindness (Wilmer), the Foundation Fighting Blindness (GL), and Altsheler Durell Foundation. Gerard Lutty received an RPB senior scientific investigator award and was an American Heart Association Established Investigator.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLeod, D.S., Baba, T., Bhutto, I.A. et al. Co-expression of endothelial and neuronal nitric oxide synthases in the developing vasculatures of the human fetal eye. Graefes Arch Clin Exp Ophthalmol 250, 839–848 (2012). https://doi.org/10.1007/s00417-012-1969-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-1969-9

Keywords

Navigation