Skip to main content

Advertisement

Log in

Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim of this work is to prospectively assess the relationship between trans-laminar cribrosa pressure difference and neuroretinal rim area as morphologic surrogate of glaucomatous optic nerve damage.

Methods

The study included 22 patients with high-pressure glaucoma, 13 patients with normal-pressure glaucoma, and 17 subjects with ocular hypertension. All participants underwent a standardized ophthalmologic examination including confocal laser scanning tomography of the optic nerve head and computerized perimetry and a neurologic examination including measurement of the lumbar cerebrospinal fluid (CSF) pressure. The trans-lamina cribrosa pressure difference was calculated as difference of intraocular pressure minus lumbar CSF pressure.

Results

Neuroretinal rim area (p = 0.006; correlation coefficient r = −0.38) and mean visual field defect (p = 0.008; r = 0.38) were significantly associated with trans-lamina cribrosa pressure difference. The probability of error was lower (i.e., the p value were lower) and the correlation coefficients were higher for the associations between rim area/visual field defect with trans-lamina cribrosa pressure difference than for the associations between rim area/visual field defect and intraocular pressure or lumbar CSF pressure.

Conclusions

The trans-lamina cribrosa pressure difference as the difference of intraocular pressure minus the lumbar CSF pressure was the main pressure parameter associated with the amount of glaucomatous optic nerve damage. This may suggest that the CSF pressure as trans-lamina cribrosa counter pressure against the intraocular pressure may play some role in the pathogenesis of glaucomatous optic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Quigley HA (1993) Open-angle glaucoma. N Engl J Med 328:1097–1106

    Article  PubMed  CAS  Google Scholar 

  2. Yücel Y, Gupta N (2008) Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res 173:465–478

    Article  PubMed  Google Scholar 

  3. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z, EMGT Group (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972

    Article  PubMed  Google Scholar 

  4. Jonas JB (2007) Intraocular pressure during headstand. Ophthalmology 114:1791

    Article  PubMed  Google Scholar 

  5. Jonas JB (2007) Trans-lamina cribrosa pressure difference. Arch Ophthalmol 125:431

    Article  PubMed  Google Scholar 

  6. Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ (1995) The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci 36:1163–1172

    PubMed  CAS  Google Scholar 

  7. Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH (2002) Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 43:3236–3242

    PubMed  Google Scholar 

  8. Jonas JB, Berenshtein E, Holbach L (2003) Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci 44:5189–5195

    Article  PubMed  Google Scholar 

  9. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73

    Article  PubMed  Google Scholar 

  10. Morgan WH, Yu DY, Alder VA et al (1998) The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci 39:1419–1428

    PubMed  CAS  Google Scholar 

  11. Volkov VV (1976) Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh 31:500–504

    PubMed  CAS  Google Scholar 

  12. Yablonski M, Ritch R, Pokorny KS (1979) Effect of decreased intracranial pressure on optic disc. Invest Ophthalmol Vis Sci 18(Suppl):165

    Google Scholar 

  13. Jonas JB, Budde WM (1999) Optic cup deepening spatially correlated with optic nerve damage in focal normal-pressure glaucoma. J Glaucoma 8:227–231

    Article  PubMed  CAS  Google Scholar 

  14. Jonas JB, Budde WM (2000) Optic nerve head appearance in juvenile-onset chronic high-pressure glaucoma and normal-pressure glaucoma. Ophthalmology 107:704–711

    Article  PubMed  CAS  Google Scholar 

  15. Jonas JB, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45:2660–2665

    Article  PubMed  Google Scholar 

  16. Morgan WH, Yu DY, Balaratnasingam C (2008) The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma 17:408–413

    Article  PubMed  Google Scholar 

  17. Berdahl JP, Allingham RR, Johnson DH (2008) Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology 115:763–768

    Article  PubMed  Google Scholar 

  18. Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR (2008) Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci 49:5412–5418

    Article  PubMed  Google Scholar 

  19. Chang TC, Singh K (2009) Glaucomatous disease in patients with normal pressure hydrocephalus. J Glaucoma 18:243–246

    Article  PubMed  Google Scholar 

  20. Jonas JB, Hayreh SS, Tao Y (2011) Thickness of the lamina cribrosa and peripapillary sclera in rhesus monkeys with non-glaucomatous or glaucomatous optic neuropathy. Acta Ophthalmol 2011 (in print)

  21. Lee AG, Pless M, Falardeau J, Capozzoli T, Wall M, Kardon RH (2005) The use of acetazolamide in idiopathic intracranial hypertension during pregnancy. Am J Ophthalmol 139:855–859

    Article  PubMed  CAS  Google Scholar 

  22. Jonas JB, Bergua A, Schmitz-Valckenberg P, Papastathopoulos KI, Budde WM (2000) Ranking of optic disc variables for detection of glaucoma damage. Invest Ophthalmol Vis Sci 41:1764–1773

    PubMed  CAS  Google Scholar 

  23. Jonas JB, Schiro D (1994) Localised wedge-shaped defects of the retinal nerve fibre layer in glaucoma. Br J Ophthalmol 78:285–290

    Article  PubMed  CAS  Google Scholar 

  24. Jonas JB, Gusek GC, Naumann GO (1988) Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci 29:1151–1158

    PubMed  CAS  Google Scholar 

  25. Jonas JB, Schiro D (1993) Visibility of the normal retinal nerve fiber layer correlated with rim width and vessel caliber. Graefes Arch Clin Exp Ophthalmol 231:207–211

    Article  PubMed  CAS  Google Scholar 

  26. Jonas JB, Nguyen XN, Naumann GO (1989) Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 30:1599–1603

    PubMed  CAS  Google Scholar 

  27. Kohlhaas M, Boehm AG, Spoerl E, Pürsten A, Grein HJ, Pillunat LE (2006) Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Arch Ophthalmol 124:471–476

    Article  PubMed  Google Scholar 

  28. Gilland O (1969) Normal cerebrospinal-fluid pressure. N Engl J Med 280:904–905

    PubMed  CAS  Google Scholar 

  29. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N (2010) Cerebrospinal fluid pressure in glaucoma. A prospective study. Ophthalmology 117:259–266

    Article  PubMed  Google Scholar 

  30. Jonas JB (2003) Ophthalmodynamometric measurement of orbital tissue pressure in thyroid-associated orbitopathy. Acta Ophthalmol 82:239

    Article  Google Scholar 

  31. Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A (2007) CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology 68:155–158

    Article  PubMed  CAS  Google Scholar 

  32. Magnaes B (1976) Body position and cerebrospinal fluid pressure. Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg 44:698–705

    Article  PubMed  CAS  Google Scholar 

  33. Hayreh SS (2009) Cerebrospinal fluid pressure and glaucomatous optic disc cupping. Graefes Arch Clin Exp Ophthalmol 247:721–724

    Article  PubMed  Google Scholar 

  34. Tsukahara S, Hasaka O, Hoshi H, Kawashima C, Whittle IR, Phillips CI (1996) Pathological cupping in normal pressure glaucoma is probably not due to low CSF pressure. Acta Ophthalmol Scand 74:646

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningli Wang.

Additional information

Ruojin Ren and Ningli L. Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, R., Wang, N., Zhang, X. et al. Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma. Graefes Arch Clin Exp Ophthalmol 249, 1057–1063 (2011). https://doi.org/10.1007/s00417-011-1657-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1657-1

Keywords

Navigation