Skip to main content

Advertisement

Log in

Fibroblast growth factor-2 protects endothelial cells from damage after corneal storage at 4°C

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Since the introduction of cold corneoscleral segment storage prior to keratoplasty there have been continuous efforts to ameliorate the preservation media in order to better maintain the quality of the corneal epi- and endothelium. Recent studies have shown that basic fibroblast growth factor (FGF-2) preserves the viability of, for example, retinal ganglion cells and pigment epithelium cells. Therefore, we investigated the effect of different concentrations of FGF-2 added to a modified Optisol storage medium on endothelial damage after corneal storage at 4°C.

Methods

Bovine corneas were stored at 4°C for 14 days and for another 24 h at 34°C. Various FGF-2 concentrations (4, 20 and 40 ng/ml) were added to the medium either at day (D) 1, D14, or both D1 and D14. Quantitative evaluation of corneal damage after 14+1 days of storage was conducted by means of the Janus green photometry assay. Histological and ultrastructural investigations of the preserved endothelium were also performed. Bovine cell culture experiments using the TUNEL assay aimed to elucidate the role of FGF-2 on prevention of endothelial apoptosis.

Results

The mean endothelial damage in control corneas increased from 4.9±1.8% (fresh corneas) to 13.4±2.4% after 14+1 days of storage. FGF-2 at 20 ng/ml or 40 ng/ml added at any of the indicated time points significantly reduced the overall endothelial damage by 5.1–7.3%, corresponding to 38–54% less endothelial damage than in control corneas (P<0.001). Light- and electron microscopic investigations confirmed this protective effect of FGF-2 on corneal endothelial cells. The TUNEL assay revealed a true anti-apoptotic effect of FGF-2 on endothelial cells in culture.

Conclusion

Our study clearly demonstrates the effectiveness of FGF-2 to enhance cell survival of the corneal endothelium after storage at 4°C. A clinical interest could be seen in the potential future application of FGF-2 as an adjuvant to corneal preservation media in order to better maintain endothelial viability during corneal storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a, b.
Fig. 4a, b.
Fig. 5.
Fig. 6a, b.

Similar content being viewed by others

References

  1. Akimoto M, Miyatake S, Kogishi J, et al (1999) Adenovirally expressed basic fibroblast growth factor rescues photoreceptor cells in RCS rats. Invest Ophthalmol Vis Sci 40:273–279

    CAS  PubMed  Google Scholar 

  2. Anderson KJ, Dam D, Lee S, Cotman CW (1988) Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 332:360–361

    Google Scholar 

  3. Araki T, Taniwaki T, Becerra SP, Chader GJ, Schwartz JP (1998) Pigment epithelium-derived factor (PEDF) differentially protects immature but not mature cerebellar granule cells against apoptotic cell death. J Neurosci Res 53:7–15

    CAS  PubMed  Google Scholar 

  4. Bourne WM (1986) Endothelial cell survival in transplanted human corneas preserved at 4°C in 2.5% chondroitin sulfate for one to 13 days. Am J Ophthalmol 102:382–386

    CAS  PubMed  Google Scholar 

  5. Briat B, David T, Serdarevic O, Gordon J, Renard G, Pouliquen Y (1994) Comparative study on the preservation of human corneal endothelium during organ culture storage with Optisol and Optisol plus epidermal growth factor (EGF). Invest Ophthalmol Vis Sci [Suppl] 35:1860

    Google Scholar 

  6. Esch F, Ueno N, Baird A, Hill F, Demoroy L, Ling N, Gospodarowicz D, Guillemin R (1985) Primary structure of bovine brain acidic FGF. Biochem Biophys Res Commun 133:554–562

    CAS  PubMed  Google Scholar 

  7. Factorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by bFGF. Nature 347:83–86

    CAS  PubMed  Google Scholar 

  8. Giguère L, Cheng J, Gospodarowicz D (1982) Factors involved in the control of proliferation of bovine corneal endothelial cells maintained in serum-free medium. J Cell Physiol 110:72–80

    PubMed  Google Scholar 

  9. Gospodarowicz D, Mescher A, Birdwell CR (1977) Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factor. Exp Eye Res 25:75–89

    CAS  PubMed  Google Scholar 

  10. Gospodarowicz D, Neufeld G, Schweigerer L (1987) Fibroblast growth factor: structural and biological properties. J Cell Physiol (Suppl) 5:15–26

    Google Scholar 

  11. Guillonneau X, Bryckaert M, Launay-Longo C, Courtois Y, Mascarelli F (1998) Endogenous FGF1-induced activation and synthesis of extracellular signal-regulated kinase 2 reduce cell apoptosis in retinal pigmented epithelial cells. J Biol Chem 273:22367–22373

    Article  CAS  PubMed  Google Scholar 

  12. Hartmann C, Rieck P (1989) A new test for endothelial viability: the Janus green photometry technique. Arch Ophthalmol 107:1511–1515

    CAS  PubMed  Google Scholar 

  13. Hoppenreijs VP, Pels E, Vrensen GF, Treffers WF (1994) Basic fibroblast growth factor stimulates corneal endothelial cell growth and endothelial wound healing of human corneas. Invest Ophthalmol Vis Sci 35:931–44

    CAS  PubMed  Google Scholar 

  14. Houssaint E, Blanquet P, Champion-Arnaud P, Gesnel MC, Torriglia A, Courtois Y, Breathnach P (1990) Related fibroblast growth factor receptor genes exist in the human genome. Proc Natl Acad Sci 87:8180–8184

    CAS  PubMed  Google Scholar 

  15. Kaufman HE, Beuerman RW, Steinemann TL, et al. (1991) Optisol corneal storage medium. Arch Ophthalmol 109:864–868

    CAS  PubMed  Google Scholar 

  16. Komuro A, Hodge DO, Gores GJ, Bourne WM (1999) Cell death during corneal storage at 4°C. Invest Ophthalmol Vis Sci 40:2827–2832

    CAS  PubMed  Google Scholar 

  17. Lass JH, Bourne WM, Musch DC, Sugar A, Gordon JF, Reinhart WJ, Meyer RF, Patel DI, Bruner WE, Cano DB, et al (1992) A randomized, double masked clinical trial of Optisol vs DexSol corneal storage media. Arch Ophthalmol 110:1404–1408

    CAS  PubMed  Google Scholar 

  18. Lass JH, Musch DC, Gordon JF, Laing RA, The Corneal Preservation Study Group (1994) Epidermal growth factor and insulin in corneal preservation. Ophthalmology 101:352–359

    CAS  PubMed  Google Scholar 

  19. Lee PL, Johnson DE, Cousens LS, Fried VA, Williams LT (1989) Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 245:57–60

    CAS  PubMed  Google Scholar 

  20. Lindstrom RL, Kaufman HE, Skelnik DL, et al (1992) Optisol corneal storage medium. Am J Ophthalmol 114:345–356

    CAS  PubMed  Google Scholar 

  21. McCarey BE, Kaufman HE (1974) Improved corneal storage. Invest Ophthalmol Vis Sci 13:165–173

    CAS  Google Scholar 

  22. Means TL, Geroski DH, Hadley A, Lynn MJ, Edelhauser HF (1995) Viability of human corneal endothelium following Optisol-GS storage. Arch Ophthalmol 113:805–809

    CAS  PubMed  Google Scholar 

  23. Naor J, Slomovic AR, Chipman M, Rootman DS (2002) A randomized, double-masked clinical trial of Optisol-GS vs Chen Medium for human corneal storage. Arch Ophthalmol 120:1280–1285

    CAS  PubMed  Google Scholar 

  24. Pharmakakis N, Hartmann C, Hilgers RD, Bergmann L, Koliopoulos I (1995) Correlation study of two methods for evaluating corneal endothelial damage in vitro: Janus green photometry technique versus cell counting. Ophthalmic Res 27:67–73

    CAS  PubMed  Google Scholar 

  25. Plouet J, Courty J, Olivié M, Courtois Y, Barritault D (1983) A highly reliable and sensitive assay for the purification of cellular growth factor. Cell Mol Biol 30:105–110

    Google Scholar 

  26. Renaud F, Desset S, Oliver L, Giminez-Galego G, Van Oberghen E, Courtois Y, Laurent M (1996) The neurotrophic activity of FGF-1 depends on FGF-1 expression and is independant of the MAP kinase cascade pathway. J Biol Chem 271:2801–2811

    Article  CAS  PubMed  Google Scholar 

  27. Rieck P, Hartmann C, Pouliquen Y, Courtois Y (1992) Recombinant human bFGF stimulates corneal endothelial wound healing in rabbits. Curr Eye Res 19:153–160

    Google Scholar 

  28. Rieck P, Oliver L, Engelmann K, Fuhrmann G, Hartmann C, Courtois Y (1995) Role of exogenous / endogenous FGF-2 and TGFß on human corneal endothelial cells proliferation in vitro. Exp Cell Res 220:36–46

    Article  CAS  PubMed  Google Scholar 

  29. Rieck P, Cholidis S, Hartmann C (2001) Intracellular signaling pathway of corneal endothelial cell migration during wound healing in vitro. Exp Eye Res 73:723–733

    Article  PubMed  Google Scholar 

  30. Rogelj S, Klagsbrun M, Atzmon R, Kurokawa M, Halmovitz A, Fuks Z, Vlodaysky I (1989) Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC 12 cells. J Cell Biol 109:823–831

    CAS  PubMed  Google Scholar 

  31. Sabatier P, Rieck P, Daumer ML, Courtois Y, Pouliquen Y, Hartmann C (1996) Effects of human recombinant basic fibroblast growth factor on endothelial wound healing in organ culture of human cornea. J Fr Ophtalmol 19:200–207

    CAS  PubMed  Google Scholar 

  32. Saksela O, Moscatelli D, Sommer A, Rifkin DB (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 107:743–751

    CAS  PubMed  Google Scholar 

  33. Schilling-Schön A, Pleyer U, Hartmann C, Rieck P (2000) The role of endogenous growth factors to support endothelial migration after wounding in vitro. Exp Eye Res 71:583–589

    Article  PubMed  Google Scholar 

  34. Sievers J, Hausmann B, Unsicker K, Berry M (1987) Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neurosci Lett 76:157–162

    CAS  PubMed  Google Scholar 

  35. Stainer GA, Brightbill FS, Calkins B (1981) A comparison of corneal storage in moist chamber and McCarey-Kaufman medium in human keratoplasty. Ophthalmology 88:46–49

    CAS  PubMed  Google Scholar 

  36. Zhang C, Takahashi K, Lam TT, Tso MOM (1994) Effects of basic fibroblast growth factor in retinal ischemia. Invest Ophthalmol Vis Sci 35:3163–3168

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Supported by a research grant (Ri 568/3-2) to P.R. from the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Rieck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieck, P.W., von Stockhausen, R.M., Metzner, S. et al. Fibroblast growth factor-2 protects endothelial cells from damage after corneal storage at 4°C. Graefe's Arch Clin Exp Ophthalmol 241, 757–764 (2003). https://doi.org/10.1007/s00417-003-0687-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-003-0687-8

Keywords

Navigation