Skip to main content

Advertisement

Log in

Clinical treatment of cryptococcal meningitis: an evidence-based review on the emerging clinical data

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Cryptococcal meningitis (CM) is a fatal fungal central nervous system (CNS) infection caused by Cryptococcus infecting the meninges and/or brain parenchyma, with fever, headache, neck stiffness, and visual disturbances as the primary clinical manifestations. Immunocompromised individuals with human immunodeficiency virus (HIV) infection or who have undergone organ transplantation, as well as immunocompetent people can both be susceptible to CM. Without treatment, patients with CM may have a mortality rate of up to 100% after hospital admission. Even after receiving therapy, CM patients may still suffer from problems such as difficulty to cure, poor prognosis, and high mortality. Therefore, timely and effective treatment is essential to improve the mortality and prognosis of CM patients. Currently, the clinical outcomes of CM are frequently unsatisfactory due to limited drug choices, severe adverse reactions, drug resistance, etc. Here, we review the research progress of CM treatment strategies and discuss the suitable options for managing CM, hoping to provide a reference for physicians to select the most appropriate treatment regimens for CM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action. https://www.who.int/publications/i/item/9789240060241, 2022.

  2. Maziarz E, Perfect J (2016) Cryptococcosis. Infect Dis Clin North Am 30(1):179–206

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mohamed S et al (2022) Fungal CNS infections in Africa: the neuroimmunology of cryptococcal meningitis. Front Immunol 13:804674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ngan N, Flower B, Day J (2022) Treatment of cryptococcal meningitis: How have we got here and where are we going? Drugs 82(12):1237–1249

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rajasingham R et al (2022) The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect Dis 22(12):1748–1755

    Article  PubMed  PubMed Central  Google Scholar 

  6. AIDS‐associated cryptococcosis: a comparison of epidemiology, clinical features and outcome in the pre‐ and post‐HAART eras. Experience of a single centre in Italy. HIV Medicine, 2009. 10(1).

  7. Liu J et al (2022) Amphotericin B plus fluorocytosine combined with voriconazole for the treatment of non-HIV and non-transplant-associated cryptococcal meningitis: a retrospective study. BMC Neurol 22(1):274

    Article  PubMed  PubMed Central  Google Scholar 

  8. Qsantos, I.A.G.A., Comparative Epidemiology and Outcomes of Human Immunodeficiency virus (HIV), Non-HIV Non-transplant, and Solid Organ Transplant Associated Cryptococcosis: A Population-Based Study. Clin Infect Dis 2018. 66(4)

  9. Tseng H et al (2015) How Cryptococcus interacts with the blood-brain barrier. Future Microbiol 10(10):1669–1682

    Article  CAS  PubMed  Google Scholar 

  10. Guidelines for the diagnosis, prevention, and management of cryptococcal disease in HIV-infected adults, adolescents and children. Geneva: World Health Organisation; 2018, Mar, 2018.

  11. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 2010.

  12. World Health Organization. Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. https://www.who.int/publications/i/item/9789240052178, 2022.

  13. Lawrence D et al (2022) Cost-effectiveness of single, high-dose, liposomal amphotericin regimen for HIV-associated cryptococcal meningitis in five countries in sub-Saharan Africa: an economic analysis of the AMBITION-cm trial. Lancet Glob Health 10(12):e1845–e1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loyse A et al (2013) Cryptococcal meningitis: improving access to essential antifungal medicines in resource-poor countries. Lancet Infect Dis 13(7):629–637

    Article  PubMed  Google Scholar 

  15. de Vedia L et al (2013) Relevance of intracranial hypertension control in the management of Cryptococcus neoformans meningitis related to AIDS. Infection 41(6):1073–1077

    Article  PubMed  Google Scholar 

  16. Zhao Y, Lin X (2021) Cryptococcus neoformans: Sex, morphogenesis, and virulence. Infect Genetics Evol 89:104731

    Article  CAS  Google Scholar 

  17. Kwon-Chung K et al (2014) Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 4(7):a019760

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen S, Meyer W, Sorrell T (2014) Cryptococcus gattii infections. Clin Microbiol Rev 27(4):980–1024

    Article  PubMed  PubMed Central  Google Scholar 

  19. McMullan B, Sorrell T, Chen S (2013) Cryptococcus gattii infections: contemporary aspects of epidemiology, clinical manifestations and management of infection. Future Microbiol 8(12):1613–1631

    Article  CAS  PubMed  Google Scholar 

  20. Rajasingham R et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17(8):873–881

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Halloran JA, Powderly WG, Spec A (2017) Cryptococcosis today: It is not all about HIV infection. Curr Clin Microbiol Rep 4(2):88–95

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bitar D et al (2014) Population-based analysis of invasive fungal infections, France, 2001–2010. Emerg Infect Dis 20(7):1149–1155

    Article  PubMed  PubMed Central  Google Scholar 

  23. Namie H et al. (2023) The prognostic factors for cryptococcal meningitis in non-human immunodeficiency virus patients: An observational study using nationwide database. Mycoses

  24. Coussement J et al (2023) Current epidemiology and clinical features of cryptococcus infection in patients without human immunodeficiency virus: a multicenter study in 46 hospitals in Australia and New Zealand. Clin Infect Dis 77(7):976–986

    Article  PubMed  Google Scholar 

  25. Fang W, Fa Z, Liao W (2015) Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genet Biol 78:7–15

    Article  PubMed  Google Scholar 

  26. Teekaput, C., S. Yasri, and R. Chaiwarith, Cryptococcal Meningitis: Differences between Patients with and without HIV-Infection. Pathogens, 2023. 12(3).

  27. Vu K, Garcia J, Gelli A (2019) Cryptococcal meningitis and anti-virulence therapeutic strategies. Front Microbiol 10:353

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu T, Perlin D, Xue C (2012) Molecular mechanisms of cryptococcal meningitis. Virulence 3(2):173–181

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sabiiti W, May R (2012) Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Future Microbiol 7(11):1297–1313

    Article  CAS  PubMed  Google Scholar 

  30. Gibson J et al (2022) Blood vessel occlusion by Cryptococcus neoformans is a mechanism for haemorrhagic dissemination of infection. PLoS Pathog 18(4):e1010389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mishra A et al (2018) Cerebrovascular injury in cryptococcal meningitis. Int J Stroke 13(1):57–65

    Article  PubMed  Google Scholar 

  32. Jin Y et al (2020) MiR-30c-5p mediates inflammatory responses and promotes microglia survival by targeting eIF2α during Cryptococcus neoformans infection. Microb Pathog 141:103959

    Article  CAS  PubMed  Google Scholar 

  33. Xu X et al (2021) Is ferroptosis a future direction in exploring cryptococcal meningitis? Front Immunol 12:598601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao L et al (2022) Ferroptosis: a mixed blessing for infectious diseases. Front Pharmacol 13:992734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Megson G et al (1996) D-mannitol in cerebrospinal fluid of patients with AIDS and cryptococcal meningitis. J Clin Microbiol 34(1):218–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loyse A et al (2010) Histopathology of the arachnoid granulations and brain in HIV-associated cryptococcal meningitis: correlation with cerebrospinal fluid pressure. AIDS (Lond Engl) 24(3):405–410

    Article  Google Scholar 

  37. Xu L et al (2019) Chemokine and cytokine cascade caused by skewing of the Th1-Th2 balance is associated with high intracranial pressure in HIV-associated cryptococcal meningitis. Mediators Inflamm 2019:2053958

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rajasingham R et al. (2019) Cryptococcal Meningitis Diagnostics and Screening in the Era of Point-of-Care Laboratory Testing. J Clin Microbiol. 57(1).

  39. Gan Z et al (2022) Performance of metagenomic next-generation sequencing for the diagnosis of cryptococcal meningitis in HIV-negative patients. Front Cell Infect Microbiol 12:831959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao Y et al (2023) Cryptococcus neoformans, a global threat to human health. Infect Dis Poverty 12(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Temfack E et al (2021) Cryptococcal antigen in serum and cerebrospinal fluid for detecting cryptococcal meningitis in adults living with human immunodeficiency virus: systematic review and meta-analysis of diagnostic test accuracy studies. Clin Infect Dis 72(7):1268–1278

    Article  CAS  PubMed  Google Scholar 

  42. Tang M et al (2016) The cryptococcal antigen lateral flow assay: A point-of-care diagnostic at an opportune time. Crit Rev Microbiol 42(4):634–642

    Article  CAS  PubMed  Google Scholar 

  43. Greene G et al (2021) Cryptococcal meningitis: a review of cryptococcal antigen screening programs in Africa. Expert Rev Anti Infect Ther 19(2):233–244

    Article  CAS  PubMed  Google Scholar 

  44. Longley N et al (2016) Cryptococcal antigen screening in patients initiating ART in South Africa: a prospective cohort study. Clin Infect Dis 62(5):581–587

    Article  CAS  PubMed  Google Scholar 

  45. Paccoud O et al (2023) Impact of prior cryptococcal antigen screening on in-hospital mortality in cryptococcal meningitis or fungaemia among HIV-seropositive individuals in South Africa: a cross-sectional observational study. Clin Microbiol Infect 29(8):1063–1069

    Article  CAS  PubMed  Google Scholar 

  46. Xing X et al (2019) Apparent performance of metagenomic next-generation sequencing in the diagnosis of cryptococcal meningitis: a descriptive study. J Med Microbiol 68(8):1204–1210

    Article  CAS  PubMed  Google Scholar 

  47. Su X et al (2022) Comparison of features and outcomes between HIV-negative patients with Cryptococcus gattii meningitis and Cryptococcus neoformans meningitis in South China. Mycoses 65(9):887–896

    Article  CAS  PubMed  Google Scholar 

  48. Fisher K et al (2021) Cryptococcal meningitis: a review for emergency clinicians. Intern Emerg Med 16(4):1031–1042

    Article  PubMed  Google Scholar 

  49. Darras-Joly C et al (1996) Cryptococcus neoformans infection in France: epidemiologic features of and early prognostic parameters for 76 patients who were infected with human immunodeficiency virus. Clin Infect Dis 23(2):369–376

    Article  CAS  PubMed  Google Scholar 

  50. Zhong Y et al (2017) Magnetic resonance imaging study of cryptococcal neuroradiological lesions in HIV-negative cryptococcal meningitis. Euro J Clin Microbiol Infect Dis 36(8):1367–1372

    Article  CAS  Google Scholar 

  51. Li X et al (2018) Comparison and correlation of magnetic resonance imaging and clinical severity in nonhuman immunodeficiency virus patients with Cryptococcal infection of central nervous system. Chin Med J 131(24):2930–2937

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tsai W et al (2018) The prognostic factors of HIV-negative adult cryptococcal meningitis with a focus on cranial MRI-based neuroimaging findings. J Clin Neurosci 55:57–61

    Article  PubMed  Google Scholar 

  53. Anjum S. et al. (2023) Neuroimaging of cryptococcal meningitis in patients without human immunodeficiency virus: data from a multi-center cohort study. J Fungi (Basel, Switzerland), 9(5).

  54. Hospenthal D, Bennett J (2000) Persistence of cryptococcomas on neuroimaging. Clin Infect Dis 31(5):1303–1306

    Article  CAS  PubMed  Google Scholar 

  55. Wang X et al (2021) Delivery strategies of amphotericin B for invasive fungal infections. Acta pharmaceutica Sinica B 11(8):2585–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robbins N, Wright G, Cowen L Antifungal drugs: the current armamentarium and development of new agents. Microbiol Spectrum, 2016. 4(5).

  57. Laniado-Laborín R, Cabrales-Vargas M (2009) Amphotericin B: side effects and toxicity. Revista iberoamericana de micologia 26(4):223–227

    Article  PubMed  Google Scholar 

  58. Grela E et al (2018) Mechanism of binding of antifungal antibiotic amphotericin b to lipid membranes: an insight from combined single-membrane imaging, microspectroscopy, and molecular dynamics. Mol Pharm 15(9):4202–4213

    Article  CAS  PubMed  Google Scholar 

  59. Nau R, Blei C, Eiffert H Intrathecal Antibacterial and Antifungal Therapies. Clin Microbiol Rev 2020. 33(3).

  60. Abdel-Hafez Y et al (2022) Tolerability and epidemiology of nephrotoxicity associated with conventional amphotericin B therapy: a retrospective study in tertiary care centers in Palestine. BMC Nephrol 23(1):132

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tuon F, Florencio K, Rocha J (2019) Burden of acute kidney injury in HIV patients under deoxycholate amphotericin B therapy for cryptococcal meningitis and cost-minimization analysis of amphotericin B lipid complex. Med Mycol 57(3):265–269

    Article  PubMed  Google Scholar 

  62. Hamill R (2013) Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73(9):919–934

    Article  CAS  PubMed  Google Scholar 

  63. Botero Aguirre J, Restrepo Hamid A (2015) Amphotericin B deoxycholate versus liposomal amphotericin B: effects on kidney function. Cochrane Database Syst Rev (11): CD010481

  64. Adedoyin A et al (1997) Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies. Antimicrob Agents Chemother 41(10):2201–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bekersky I et al (2002) Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 46(3):828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Santos C et al (2019) Comparative study on liposomal amphotericin B and other therapies in the treatment of mucosal leishmaniasis: a 15-year retrospective cohort study. PLoS ONE 14(6):e0218786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Steimbach L et al (2017) Efficacy and safety of amphotericin B lipid-based formulations-A systematic review and meta-analysis. Mycoses 60(3):146–154

    Article  CAS  PubMed  Google Scholar 

  68. Quindós G et al (2019) Therapeutic tools for oral candidiasis: Current and new antifungal drugs. Medicina Oral, Patologia Oral y Cirugia Bucal 24(2):e172–e180

    PubMed  PubMed Central  Google Scholar 

  69. Safdar A et al (2010) Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine 89(4):236–244

    Article  CAS  PubMed  Google Scholar 

  70. Wade R et al (2013) Nephrotoxicity and other adverse events among inpatients receiving liposomal amphotericin B or amphotericin B lipid complex. Diagn Microbiol Infect Dis 76(3):361–367

    Article  CAS  PubMed  Google Scholar 

  71. Wingard, J., et al., A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis 2000. 31(5): p. 1155–63.

  72. Charfi O et al (2023) DRESS syndrome associated with liposomal amphotericin-b in a kidney transplant patient: a case report. Curr Drug Saf 18(2):264–266

    Article  PubMed  Google Scholar 

  73. Ramu R et al (2021) Liposomal amphotericin B-induced reversible ototoxicity in a patient with disseminated histoplasmosis. Indian J Pharmacol 53(2):157–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang X et al (2016) Amphotericin B liposome-induced acrocyanosis and elevated serum creatinine. Indian J Pharmacol 48(3):321–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vaish E et al (2022) Amphotericin B induced pancytopenia. J Family Medi Primary Care 11(9):5692–5695

    Article  Google Scholar 

  76. Loo A, Muhsin S, Walsh T (2013) Toxicokinetic and mechanistic basis for the safety and tolerability of liposomal amphotericin B. Expert Opin Drug Saf 12(6):881–895

    Article  CAS  PubMed  Google Scholar 

  77. Shigemi A et al (2011) Safety analysis of liposomal amphotericin B in adult patients: anaemia, thrombocytopenia, nephrotoxicity, hepatotoxicity and hypokalaemia. Int J Antimicrob Agents 38(5):417–420

    Article  CAS  PubMed  Google Scholar 

  78. Alshahrani S et al. (2022) Amphotericin B-PEG Conjugates of ZnO Nanoparticles: Enhancement Antifungal Activity with Minimal Toxicity. Pharmaceutics, 14(8).

  79. Kaur K, Kumar P, Kush P (2020) Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 128: p. 110297.

  80. Liu Y et al (2020) Turning weakness into strength: Albumin nanoparticle-redirected amphotericin B biodistribution for reducing nephrotoxicity and enhancing antifungal activity. J Controlled Rel 324:657–668

    Article  CAS  Google Scholar 

  81. Alvarez-Uria G et al (2018) BSafety and tolerability of intrathecal liposomal amphotericin () for cryptococcal meningitis: a retrospective study in HIV-infected patients. Therapeutic Adv Infect Dis 5(5):77–81

    Article  CAS  Google Scholar 

  82. Nakama T et al (2015) Usefulness of intraventricular infusion of antifungal drugs through Ommaya reservoirs for cryptococcal meningitis treatment. J Neurol Sci 358:259–262

    Article  CAS  PubMed  Google Scholar 

  83. Tunkel A et al (2017) 2017 Infectious diseases society of america’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis 64(6):e34–e65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheng L et al (2021) Bioresponsive micro-to-nano albumin-based systems for targeted drug delivery against complex fungal infections. Acta pharmaceutica Sinica B 11(10):3220–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin W et al (2021) Sustained intrathecal delivery of amphotericin B using an injectable and biodegradable thermogel. Drug Delivery 28(1):499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fisher J, Dewald J (1983) Parkinsonism associated with intraventricular amphotericin B. J Antimicrob Chemother 12(1):97–99

    Article  CAS  PubMed  Google Scholar 

  87. Yuchong C et al (2011) Lumbar puncture drainage with intrathecal injection of amphotericin B for control of cryptococcal meningitis. Mycoses 54(4):e248–e251

    Article  PubMed  Google Scholar 

  88. Alvarez-Uria G et al (2015) Short-Course Induction Treatment with Intrathecal Amphotericin B Lipid Emulsion for HIV Infected Patients with Cryptococcal Meningitis. J Trop Med 2015:864271

    Article  PubMed  PubMed Central  Google Scholar 

  89. Polsky B et al (1986) Intraventricular therapy of cryptococcal meningitis via a subcutaneous reservoir. Am J Med 81(1):24–28

    Article  CAS  PubMed  Google Scholar 

  90. Sigera L, Denning D (2023) Flucytosine and its clinical usage. Therapeutic Adv Infect Dis 10:20499361231161388

    Google Scholar 

  91. Bennet J (1977) Flucytosine. Ann Intern Med 86(3):319–321

    Article  CAS  PubMed  Google Scholar 

  92. Bidaud A et al. (2019) In vitro antifungal combination of flucytosine with amphotericin B, voriconazole, or micafungin against shows no antagonism. Antimicrobial Agents Chemotherapy 63(12).

  93. Schwarz P et al (2007) Combination of amphotericin B with flucytosine is active in vitro against flucytosine-resistant isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 51(1):383–385

    Article  CAS  PubMed  Google Scholar 

  94. Nguyen M et al. (1995) In vitro evaluation of combination of fluconazole and flucytosine against Cryptococcus neoformans var. neoformans. Antimicrobial Agents Chemotherapy, 39(8): 1691–5.

  95. Larsen R et al (1996) Effect of fluconazole on fungicidal activity of flucytosine in murine cryptococcal meningitis. Antimicrob Agents Chemother 40(9):2178–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miot J et al (2021) Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res 21(1):305

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mashau R et al (2022) Outcomes of flucytosine-containing combination treatment for cryptococcal meningitis in a South African national access programme: a cross-sectional observational study. Lancet Infect Dis 22(9):1365–1373

    Article  CAS  PubMed  Google Scholar 

  98. Baracaldo-Santamaría D et al. (2022) Therapeutic drug monitoring of antifungal agents in critically Ill patients: is there a need for dose optimisation? Antibiotics (Basel, Switzerland) 11(5)

  99. Pasko M, Piscitelli S, Van Slooten A (1990) Fluconazole: a new triazole antifungal agent. DICP 24(9):860–867

    Article  CAS  PubMed  Google Scholar 

  100. Zhao H et al (2018) High dose fluconazole in salvage therapy for HIV-uninfected cryptococcal meningitis. BMC Infect Dis 18(1):643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hope W et al. Fluconazole monotherapy is a suboptimal option for initial treatment of cryptococcal meningitis because of emergence of resistance. mBio, 2019. 10(6).

  102. Kanyama C et al (2020) One-year mortality outcomes from the advancing cryptococcal meningitis treatment for africa trial of cryptococcal meningitis treatment in Malawi. Clin Infect Dis 70(3):521–524

    Article  PubMed  Google Scholar 

  103. Zhao H et al (2023) Induction therapy with high-dose fluconazole plus flucytosine for human immunodeficiency virus-uninfected cryptococcal meningitis patients: Feasible or not? Mycoses 66(1):59–68

    Article  CAS  PubMed  Google Scholar 

  104. Lalloo U et al (2023) Higher dose oral fluconazole for the treatment of AIDS-related Cryptococcal Meningitis (HIFLAC)-report of A5225, a multicentre, phase I/II, two-stage, dose-finding, safety, tolerability and efficacy randomised, amphotericin B-controlled trial of the AIDS Clinical Trials Group. PLoS ONE 18(2):e0281580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lipp H (2008) Antifungal agents—clinical pharmacokinetics and drug interactions. Mycoses p. 7–18.

  106. Lempers V et al (2015) Drug-interactions of azole antifungals with selected immunosuppressants in transplant patients: strategies for optimal management in clinical practice. Curr Opin Pharmacol 24:38–44

    Article  CAS  PubMed  Google Scholar 

  107. Li Y et al (2020) What is the most appropriate induction regimen for the treatment of HIV-associated cryptococcal meningitis when the recommended regimen is not available? Evidence from a network meta-analysis. Front Pharmacol 11:963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Molloy S et al (2018) Antifungal combinations for treatment of Cryptococcal Meningitis in Africa. N Engl J Med 378(11):1004–1017

    Article  CAS  PubMed  Google Scholar 

  109. Jarvis J et al (2019) Short-course High-dose liposomal amphotericin b for human immunodeficiency virus-associated cryptococcal meningitis: a phase 2 randomized controlled trial. Clin Infect Dis 68(3):393–401

    Article  CAS  PubMed  Google Scholar 

  110. Jarvis J et al (2022) Single-dose liposomal amphotericin b treatment for cryptococcal meningitis. N Engl J Med 386(12):1109–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yao Z et al (2014) Comparison of flucytosine and fluconazole combined with amphotericin B for the treatment of HIV-associated cryptococcal meningitis: a systematic review and meta-analysis. Euro J Clin Microbiol Infect Dis 33(8):1339–1344

    Article  CAS  Google Scholar 

  112. Day J et al (2013) Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368(14):1291–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vaidhya SA et al. (2015) Combination versus monotherapy for the treatment of HIV associated cryptococcal meningitis. J Clin Diagn Res 9(2): Oc14–6.

  114. Patel AK et al (2010) Management of cryptococcal meningitis in HIV-infected patients: experience from western India. Indian J Sex Transm Dis AIDS 31(1):22–26

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhao T et al (2022) Comparison of amphotericin B deoxycholate in combination with either flucytosine or fluconazole, and voriconazole plus flucytosine for the treatment of HIV-associated cryptococcal meningitis: a prospective multicenter study in China. BMC Infect Dis 22(1):677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li Z et al (2019) Fluconazole plus flucytosine is a good alternative therapy for non-HIV and non-transplant-associated cryptococcal meningitis: a retrospective cohort study. Mycoses 62(8):686–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jackson AT et al (2012) A phase II randomized controlled trial adding oral flucytosine to high-dose fluconazole, with short-course amphotericin B, for cryptococcal meningitis. AIDS 26(11):1363–1370

    Article  CAS  PubMed  Google Scholar 

  118. Qu J, Jiang J, Lv X (2020) The utility of cerebrospinal fluid white cell count during the prognostic assessment for cryptococcal meningitis patients: a retrospective study. BMC Infect Dis 20(1):571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu L et al (2018) Triple therapy versus amphotericin B plus flucytosine for the treatment of non-HIV- and non-transplant-associated cryptococcal meningitis: retrospective cohort study. Neurol Res 40(5):398–404

    Article  CAS  PubMed  Google Scholar 

  120. Iyer K et al (2021) Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol 19(7):454–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shaw K et al. (2018) In Vitro and Evaluation of APX001A/APX001 and Other Gwt1 Inhibitors against Cryptococcus. Antimicrobial Agents Chemotherapy. 62(8).

  122. Garvey E et al (2018) The novel fungal CYP51 inhibitor VT-1598 is efficacious alone and in combination with liposomal amphotericin B in a murine model of cryptococcal meningitis. J Antimicrob Chemother 73(10):2815–2822

    Article  CAS  PubMed  Google Scholar 

  123. Hai T et al (2019) The combination of tamoxifen with amphotericin B, but not with fluconazole, has synergistic activity against the majority of clinical isolates of Cryptococcus neoformans. Mycoses 62(9):818–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Treviño-Rangel RJ et al (2016) Activity of sertraline against Cryptococcus neoformans: in vitro and in vivo assays. Med Mycol 54(3):280–286

    Article  PubMed  Google Scholar 

  125. Zhai B et al (2012) The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob Agents Chemother 56(7):3758–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rhein J et al (2016) Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: an open-label dose-ranging study. Lancet Infect Dis 16(7):809–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rhein J et al (2019) Adjunctive sertraline for HIV-associated cryptococcal meningitis: a randomised, placebo-controlled, double-blind phase 3 trial. Lancet Infect Dis 19(8):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ngan N et al. (2021) An open label randomized controlled trial of tamoxifen combined with amphotericin B and fluconazole for cryptococcal meningitis. eLife 10.

  129. Aaron P, Vu K, Gelli A (2020) An Antivirulence Approach for Preventing Cryptococcus neoformans from Crossing the Blood-Brain Barrier via Novel Natural Product Inhibitors of a Fungal Metalloprotease. mBio 11(4).

  130. Li Z et al (2019) Discovery of simplified sampangine derivatives with potent antifungal activities against cryptococcal meningitis. ACS Infect Dis 5(8):1376–1384

    Article  CAS  PubMed  Google Scholar 

  131. Lin C et al. (2020) Natural alkaloid tryptanthrin exhibits novel anticryptococcal activity. Med Mycol

  132. Rolfes M et al (2014) The effect of therapeutic lumbar punctures on acute mortality from cryptococcal meningitis. Clin Infect Dis 59(11):1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang Q et al (2019) Lumbar drainage for the treatment of refractory intracranial hypertension in HIV-negative cryptococcal meningitis. Future Microbiol 14:859–866

    Article  CAS  PubMed  Google Scholar 

  134. Chumboatong W et al (2017) Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat. Neurochem Int 102:114–122

    Article  CAS  PubMed  Google Scholar 

  135. Li M et al (2020) Triple therapy combined with ventriculoperitoneal shunts can improve neurological function and shorten hospitalization time in non-HIV cryptococcal meningitis patients with increased intracranial pressure. BMC Infect Dis 20(1):844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bicanic T et al (2009) Relationship of cerebrospinal fluid pressure, fungal burden and outcome in patients with cryptococcal meningitis undergoing serial lumbar punctures. AIDS (London, England) 23(6):701–706

    Article  PubMed  Google Scholar 

  137. Meda J et al. (2014) Cryptococcal meningitis management in Tanzania with strict schedule of serial lumber punctures using intravenous tubing sets: an operational research study. J Acquired Immune Deficiency Syndromes (1999) 66(2): e31–6.

  138. Xu X et al (2022) Therapeutic lumbar puncture and lumbar drainage: which is more effective for the management of intracranial hypertension in HIV patients with cryptococcal meningitis? Results of a prospective non-randomized interventional study in China. Curr Med Res Opin 38(5):803–810

    Article  CAS  PubMed  Google Scholar 

  139. Wan Y et al (2020) Clinical characteristic of 15 cases of cryptococcal meningitis treated with Ommaya reservoir. Acta Neurol Belg 120(5):1139–1145

    Article  PubMed  Google Scholar 

  140. Jiang P et al (2010) The role of an Ommaya reservoir in the management of children with cryptococcal meningitis. Clin Neurol Neurosurg 112(2):157–159

    Article  PubMed  Google Scholar 

  141. Gerber N et al (2015) Ventricular catheter systems with subcutaneous reservoirs (Ommaya Reservoirs) in pediatric patients with brain tumors: infections and other complications. Neuropediatrics 46(6):401–409

    Article  PubMed  Google Scholar 

  142. Liu Y et al (2019) Efficacy of ventriculoperitoneal shunting in patients with cryptococcal meningitis with intracranial hypertension. Int J Infect Dis: IJID 88:102–109

    Article  PubMed  Google Scholar 

  143. Liu J et al (2018) Ventriculoperitoneal shunts in non-HIV cryptococcal meningitis. BMC Neurol 18(1):58

    Article  PubMed  PubMed Central  Google Scholar 

  144. Xu L et al (2022) Clinical features and risk factors of surgical site infections in HIV-negative patients with cryptococcal meningitis underwent ventriculoperitoneal shunt operations: a retrospective study. BMC Infect Dis 22(1):736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shi J et al (2020) Hypertonic saline and mannitol in patients with traumatic brain injury: a systematic and meta-analysis. Medicine 99(35):e21655

    Article  PubMed  PubMed Central  Google Scholar 

  146. Infanti JL (2009) Challenging the gold standard: should mannitol remain our first-line defense against intracranial hypertension? J Neurosci Nurs 40(6):362–368

    Article  Google Scholar 

  147. Bereczki D et al. (2007) Mannitol for acute stroke. Cochrane Database Syst Rev. 2007(3): CD001153

  148. Hu Z et al (2017) The use of mannitol in HIV-infected patients with symptomatic cryptococcal meningitis. Drug Discoveries Therapeutics 10(6):329–333

    Article  PubMed  Google Scholar 

  149. Alanazi A et al. (2022) Elevated intracranial pressure in cryptococcal meningoencephalitis: examining old, new, and promising drug therapies. Pathogens (Basel, Switzerland), 11(7).

  150. Li Y et al (2015) Efficacy and safety of continuous micro-pump infusion of 3% hypertonic saline combined with furosemide to control elevated intracranial pressure. Med Sci Monitor 21:1752–1758

    Article  CAS  Google Scholar 

  151. Marko NF (2012) Hypertonic saline, not mannitol, should be considered gold-standard medical therapy for intracranial hypertension. Crit Care 16(1):113

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wall M et al (2014) Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA 311(16):1641–1651

    Article  PubMed  Google Scholar 

  153. Johnston S et al (1992) Raised intracranial pressure and visual complications in AIDS patients with cryptococcal meningitis. J Infect 24(2):185–189

    Article  CAS  PubMed  Google Scholar 

  154. Newton P et al (2002) A randomized, double-blind, placebo-controlled trial of acetazolamide for the treatment of elevated intracranial pressure in cryptococcal meningitis. Clinical Infect Dis 35(6):769–772

    Article  CAS  Google Scholar 

  155. de Gans J, van de Beek D (2002) Dexamethasone in adults with bacterial meningitis. N Engl J Med 347(20):1549–1556

    Article  PubMed  Google Scholar 

  156. Thwaites G et al (2004) Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 351(17):1741–1751

    Article  CAS  PubMed  Google Scholar 

  157. Beardsley J et al (2016) Adjunctive dexamethasone in hiv-associated cryptococcal meningitis. N Engl J Med 374(6):542–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Beardsley J et al (2019) Do intracerebral cytokine responses explain the harmful effects of dexamethasone in human immunodeficiency virus-associated cryptococcal meningitis? Clin Infect Dis 68(9):1494–1501

    Article  CAS  PubMed  Google Scholar 

  159. Kitonsa J et al (2020) Determinants of two-year mortality among HIV positive patients with Cryptococcal meningitis initiating standard antifungal treatment with or without adjunctive dexamethasone in Uganda. PLoS Negl Trop Dis 14(11):e0008823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Boulware D et al (2014) Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med 370(26):2487–2498

    Article  PubMed  PubMed Central  Google Scholar 

  161. Makadzange A et al (2010) Early versus delayed initiation of antiretroviral therapy for concurrent HIV infection and cryptococcal meningitis in sub-saharan Africa. Clinical Infect Dis 50(11):1532–1538

    Article  CAS  Google Scholar 

  162. Zhao T et al. (2021) The effect of early vs. deferred antiretroviral therapy initiation in hiv-infected patients with cryptococcal meningitis: a multicenter prospective randomized controlled analysis in China. Front Med. 8: 779181

  163. Ingle S et al (2023) Early antiretroviral therapy not associated with higher cryptococcal meningitis mortality in people with human immunodeficiency virus in high-income countries: an international collaborative cohort study. Clin Infect Dis 77(1):64–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ugur M et al (2023) Cryptococcal meningitis in a non-HIV patient with solid organ transplantation. J Mycol Med 33(3):101388

    Article  PubMed  Google Scholar 

  165. Francke E (1987) The many causes of meningitis. Postgraduate Med. 82(2): 175–8, 181–3, 187–8.

  166. Zheng H et al (2015) A retrospective study of contributing factors for prognosis and survival length of cryptococcal meningoencephalitis in Southern part of China (1998–2013). BMC Infect Dis 15:77

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhu L et al (2010) Cryptococcal meningitis in non-HIV-infected patients in a Chinese tertiary care hospital, 1997–2007. Med Mycol 48(4):570–579

    Article  PubMed  Google Scholar 

  168. Rossato L et al (2022) In vitro activity of immunosuppressive agents against Cryptococcus neoformans. Enfermedades infecciosas y microbiologia clinica (English ed) 40(2):86–88

    PubMed  Google Scholar 

  169. Costa M et al (2009) Cryptococcal meningitis in HIV negative pregnant women: case report and review of literature. Rev Inst Med Trop Sao Paulo 51(5):289–294

    Article  PubMed  Google Scholar 

  170. Pastick K et al (2020) Cryptococcosis in pregnancy and the postpartum period: Case series and systematic review with recommendations for management. Med Mycol 58(3):282–292

    Article  CAS  PubMed  Google Scholar 

  171. Curole D (1981) Cryptococcal meningitis in pregnancy. J Reprod Med 26(6):317–319

    CAS  PubMed  Google Scholar 

  172. Chen C, Wang K (1996) Cryptococcal meningitis in pregnancy. Am J Perinatol 13(1):35–36

    Article  PubMed  Google Scholar 

  173. Moudgal V, Sobel J (2003) Antifungal drugs in pregnancy: a review. Expert Opin Drug Saf 2(5):475–483

    Article  CAS  PubMed  Google Scholar 

  174. Patel M, Aliporewala V, Patel D (2021) Common antifungal drugs in pregnancy: risks and precautions. J Obstet Gynaecol India 71(6):577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nyazika T et al (2016) Cryptococcal meningitis presenting as a complication in hiv-infected children: a case series from sub-saharan Africa. Pediatr Infect Dis J 35(9):979–980

    Article  PubMed  PubMed Central  Google Scholar 

  176. Watt K, Benjamin, Jr. DK, Cohen-Wolkowiez M (2011) Pharmacokinetics of antifungal agents in children. Early Hum Dev. 87 (Suppl 1): S61–5.

  177. Lu H et al (2005) Cryptococcal antigen test revisited: significance for cryptococcal meningitis therapy monitoring in a tertiary chinese hospital. J Clin Microbiol 43(6):2989–2990

    Article  PubMed  PubMed Central  Google Scholar 

  178. Aberg J et al (2000) Clinical utility of monitoring serum cryptococcal antigen (sCRAG) titers in patients with AIDS-related cryptococcal disease. HIV Clin Trials 1(1):1–6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

EQC contributed to the conception, manuscript review and revision, and submission, MZL was involved in literature search, original draft writing, drawing diagrams, and manuscript revision, XHD was involved in the literature search, drawing diagrams, and manuscript revision, and MTZ was involved in the literature search.

Corresponding author

Correspondence to En-Qiang Chen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, MZ., Dai, XH., Zeng, MT. et al. Clinical treatment of cryptococcal meningitis: an evidence-based review on the emerging clinical data. J Neurol (2024). https://doi.org/10.1007/s00415-024-12193-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-024-12193-8

Keywords

Navigation