Skip to main content
Log in

Study of the relationship between onset lateralization and hemispheric white matter asymmetry in Parkinson's disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Parkinson's disease (PD) is characterized by a lateralized onset, but its cause and mechanism are still unclear.

Methods

Obtaining diffusion tensor imaging (DTI) data from the Parkinson’s Progression Markers Initiative (PPMI). Tract-based spatial statistics analysis and region-of-interest-based analysis were performed to evaluate the white matter (WM) asymmetry using original DTI parameters, Z Score normalized parameters, or the asymmetry index (AI). Hierarchical cluster analysis and least absolute shrinkage and selection operator regression were performed to construct predictive models for predicting the PD onset side. DTI data from The Second Affiliated Hospital of Chongqing Medical University were obtained for external validation of the prediction model.

Results

118 PD patients and 69 healthy controls (HC) from PPMI were included. Right-onset PD patients presented more asymmetric areas than left-onset PD patients. The inferior cerebellar peduncle (ICP), superior cerebellar peduncle (SCP), external capsule (EC), cingulate gyrus (CG), superior fronto-occipital fasciculus (SFO), uncinate fasciculus (UNC), and tapetum (TAP) showed significant asymmetry in left-onset and right-onset PD patients. An onset-side-specific pattern of WM alterations exists in PD patients, and a prediction model was constructed. The predicting models based on AI and ΔZ Score presented favorable efficacy in predicting PD onset side by external validation in 26 PD patients and 16 HCs from our hospital.

Conclusions

Right-onset PD patients may have more severe WM damage than left-onset PD patients. WM asymmetry in ICP, SCP, EC, CG, SFO, UNC, and TAP may predict PD onset side. Imbalances in the WM network may underlie the mechanism of lateralized onset in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors.

References

  1. Miller DB, O’Callaghan JP (2015) Biomarkers of Parkinson’s disease: Present and future. Metabolism 64:S40–S46. https://doi.org/10.1016/j.metabol.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Yang QX, Sun X et al (2015) MRI evaluation of asymmetry of nigrostriatal damage in the early stage of early-onset Parkinson’s disease. Parkinsonism Relat Disord 21:590–596. https://doi.org/10.1016/j.parkreldis.2015.03.012

    Article  PubMed  Google Scholar 

  3. Djaldetti R, Ziv I, Melamed E (2006) The mystery of motor asymmetry in Parkinson’s disease. The Lancet Neurology 5:796–802. https://doi.org/10.1016/S1474-4422(06)70549-X

    Article  PubMed  Google Scholar 

  4. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  5. Özekmekçi S, Benbir G, Özdogan FY et al (2007) Hemihypomimia, a rare persistent sign in Parkinson’s disease: follow up of 11 patients. J Neurol 254:347–350. https://doi.org/10.1007/s00415-006-0372-z

    Article  PubMed  Google Scholar 

  6. Guerra-Hiraldo JD, López-Jiménez A, Gasca-Salas C et al (2023) Hemihypomimia in Parkinson’s disease: an under-recognized clinical sign? J Neurol 270:548–551. https://doi.org/10.1007/s00415-022-11292-8

    Article  PubMed  Google Scholar 

  7. Djaldetti R, Shifrin A, Rogowski Z et al (2004) Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology 62:2171–2175. https://doi.org/10.1212/01.WNL.0000130455.38550.9D

    Article  CAS  PubMed  Google Scholar 

  8. Fusina S, Conte S, Bertolasi L et al (1999) Sympathetic skin response asymmetry in early stage idiopathic Parkinson’s disease. Clin Neurophysiol 110:358–366. https://doi.org/10.1016/S1388-2457(98)00012-1

    Article  CAS  PubMed  Google Scholar 

  9. Quinn NP, Lang AE, Koller WC, Marsden CD (1986) PAINFUL PARKINSON’S DISEASE. The Lancet 327:1366–1369. https://doi.org/10.1016/S0140-6736(86)91674-0

    Article  Google Scholar 

  10. Snider SR, Fahn S, Isgreen WP, Cote LJ (1976) Primary sensory symptoms in parkinsonism. Neurology 26:423–429. https://doi.org/10.1212/wnl.26.5.423

    Article  CAS  PubMed  Google Scholar 

  11. Levin J, Kurz A, Arzberger T et al (2016) The Differential Diagnosis and Treatment of Atypical Parkinsonism. Dtsch Arztebl Int. https://doi.org/10.3238/arztebl.2016.0061

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ham JH, Lee JJ, Kim JS et al (2015) Is dominant-side onset associated with a better motor compensation in Parkinson’s disease? Mov Disord 30:1921–1925. https://doi.org/10.1002/mds.26418

    Article  CAS  PubMed  Google Scholar 

  13. Sawle GV, Playford ED, Brooks DJ et al (1993) Asymmetrical pre-synaptic and post-synaptic changes in the striatal dopamine projection in dopa naïve parkinsonism: diagnostic implications of the D2 receptor status. Brain 116:853–867. https://doi.org/10.1093/brain/116.4.853

    Article  PubMed  Google Scholar 

  14. Pelizzari L, Di Tella S, Laganà MM et al (2020) White matter alterations in early Parkinson’s disease: role of motor symptom lateralization. Neurol Sci 41:357–364. https://doi.org/10.1007/s10072-019-04084-y

    Article  PubMed  Google Scholar 

  15. Marek K, Jennings D, Lasch S et al (2011) The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 95:629–635. https://doi.org/10.1016/j.pneurobio.2011.09.005

    Article  PubMed Central  Google Scholar 

  16. Jenkinson M, Beckmann CF, Behrens TEJ et al (2012) FSL NeuroImage 62:782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  17. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  18. Winkler AM, Ridgway GR, Webster MA et al (2014) Permutation inference for the general linear model. Neuroimage 92:381–397. https://doi.org/10.1016/j.neuroimage.2014.01.060

    Article  PubMed  Google Scholar 

  19. Mori S, Oishi K, Jiang H et al (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40:570–582. https://doi.org/10.1016/j.neuroimage.2007.12.035

    Article  PubMed  Google Scholar 

  20. Boscolo Galazzo I, Mattoli MV, Pizzini FB, et al (2016) Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of 18 F-FDG PET and arterial spin labeling. NeuroImage: Clinical 11:648–657. https://doi.org/10.1016/j.nicl.2016.04.005

  21. Carper RA, Treiber JM, DeJesus SY, Müller R-A (2016) Reduced hemispheric asymmetry of white matter microstructure in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 55:1073–1080. https://doi.org/10.1016/j.jaac.2016.09.491

    Article  PubMed  PubMed Central  Google Scholar 

  22. Riederer P, Sian-Hülsmann J (2012) The significance of neuronal lateralisation in Parkinson’s disease. J Neural Transm 119:953–962. https://doi.org/10.1007/s00702-012-0775-1

    Article  CAS  PubMed  Google Scholar 

  23. Baumann CR, Held U, Valko PO et al (2014) Body side and predominant motor features at the onset of Parkinson’s disease are linked to motor and nonmotor progression: Predictors of PD Motor and Nonmotor Outcomes. Mov Disord 29:207–213. https://doi.org/10.1002/mds.25650

    Article  PubMed  Google Scholar 

  24. Munhoz RP, Espay AJ, Morgante F et al (2013) Long-duration Parkinson’s disease: Role of lateralization of motor features. Parkinsonism Relat Disord 19:77–80. https://doi.org/10.1016/j.parkreldis.2012.07.008

    Article  PubMed  Google Scholar 

  25. Frazzitta G, Ferrazzoli D, Maestri R, et al (2015) Differences in Muscle Strength in Parkinsonian Patients Affected on the Right and Left Side. PLoS ONE 10:e0121251. https://doi.org/10.1371/journal.pone.0121251

  26. Rektor I, Svátková A, Vojtíšek L, et al (2018) White matter alterations in Parkinson’s disease with normal cognition precede grey matter atrophy. PLoS ONE 13:e0187939. https://doi.org/10.1371/journal.pone.0187939

  27. Scherfler C, Seppi K, Mair KJ et al (2012) Left hemispheric predominance of nigrostriatal dysfunction in Parkinson’s disease. Brain 135:3348–3354. https://doi.org/10.1093/brain/aws253

    Article  PubMed  Google Scholar 

  28. Iranzo A, Stefani A, Niñerola-Baizan A et al (2020) Left-hemispheric predominance of nigrostriatal deficit in isolated REM sleep behavior disorder. Neurology 94:e1605–e1613. https://doi.org/10.1212/WNL.0000000000009246

    Article  PubMed  Google Scholar 

  29. Kim JS, Yang J, Lee J et al (2014) Topographic pattern of cortical thinning with consideration of motor laterality in Parkinson disease. Parkinsonism Relat Disord 20:1186–1190. https://doi.org/10.1016/j.parkreldis.2014.08.021

    Article  PubMed  Google Scholar 

  30. Thiebaut de Schotten M, Forkel SJ (2022) The emergent properties of the connected brain. Science 378:505–510. https://doi.org/10.1126/science.abq2591

    Article  CAS  PubMed  Google Scholar 

  31. Standring S (2008) Gray’s Anatomy, 40th edn. Churchill Livingstone, London

    Google Scholar 

  32. Zhong Y, Liu H, Liu G, et al (2022) A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinson’s disease. npj Parkinsons Dis 8:82. https://doi.org/10.1038/s41531-022-00347-2

  33. Ogawa T, Hatano T, Kamagata K et al (2021) White matter alterations in Parkinson’s disease with levodopa-induced dyskinesia. Parkinsonism Relat Disord 90:8–14. https://doi.org/10.1016/j.parkreldis.2021.07.021

    Article  CAS  PubMed  Google Scholar 

  34. Shen Q, Liu Y, Guo J et al (2022) Impaired white matter microstructure associated with severe depressive symptoms in patients with PD. Brain Imaging Behav 16:169–175. https://doi.org/10.1007/s11682-021-00488-7

    Article  PubMed  Google Scholar 

  35. Uhr L, Tsolaki E, Pouratian N (2022) Diffusion tensor imaging correlates of depressive symptoms in Parkinson disease. J of Comparative Neurology 530:1729–1738. https://doi.org/10.1002/cne.25310

    Article  Google Scholar 

  36. Takeshige-Amano H, Hatano T, Kamagata K et al (2022) White matter microstructures in Parkinson’s disease with and without impulse control behaviors. Ann Clin Transl Neurol 9:253–263. https://doi.org/10.1002/acn3.51504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang J, Zhang F, Zhao C, et al (2020) Investigation of local white matter abnormality in Parkinson’s disease by using an automatic fiber tract parcellation. Behavioural Brain Research 394:112805. https://doi.org/10.1016/j.bbr.2020.112805

  38. Lucas-Jiménez O, Díez-Cirarda M, Ojedaa N et al (2015) Verbal memory in parkinson’s disease: a combined DTI and fMRI study. J Parkinsons Dis 5:793–804. https://doi.org/10.3233/jpd-150623

    Article  PubMed  PubMed Central  Google Scholar 

  39. Di Tella S, Baglio F, Pelizzari L, et al (2020) Uncinate fasciculus and word selection processing in Parkinson’s disease. Neuropsychologia 146:107504. https://doi.org/10.1016/j.neuropsychologia.2020.107504

  40. Bubb EJ, Metzler-Baddeley C, Aggleton JP (2018) The cingulum bundle: anatomy, function, and dysfunction. Neurosci Biobehav Rev 92:104–127. https://doi.org/10.1016/j.neubiorev.2018.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dalgleish T (2004) The emotional brain. Nat Rev Neurosci 5:583–589. https://doi.org/10.1038/nrn1432

    Article  CAS  PubMed  Google Scholar 

  42. Kantarci K, Senjem ML, Avula R et al (2011) Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology 77:26–34. https://doi.org/10.1212/WNL.0b013e31822313dc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aarsland D, Batzu L, Halliday GM et al (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7:47. https://doi.org/10.1038/s41572-021-00280-3

    Article  PubMed  Google Scholar 

  44. Lally H, Hart AR, Bay AA et al (2020) Association between motor subtype and visuospatial and executive function in mild-moderate Parkinson disease. Arch Phys Med Rehabil 101:1580–1589. https://doi.org/10.1016/j.apmr.2020.05.018

    Article  PubMed  Google Scholar 

  45. Du J, Zhu H, Yu L, et al (2021) Multi-Dimensional Diffusion Tensor Imaging Biomarkers for Cognitive Decline From the Preclinical Stage: A Study of Post-stroke Small Vessel Disease. Front Neurol 12:687959. https://doi.org/10.3389/fneur.2021.687959

  46. Goldwaser EL, Du X, Adhikari BM et al (2022) Role of white matter microstructure in impulsive behavior. JNP 34:254–260. https://doi.org/10.1176/appi.neuropsych.21070167

    Article  Google Scholar 

  47. Pu W, Shen X, Huang M et al (2020) Assessment of white matter lesions in Parkinson’s disease: voxel-based analysis and tract-based spatial statistics analysis of Parkinson’s disease with mild cognitive impairment. Curr Neurovasc Res 17:480–486. https://doi.org/10.2174/1567202617666200901181842

    Article  PubMed  Google Scholar 

  48. Chen L, Zeng X, Zhou S, et al (2022) Correlation Between Serum High-Sensitivity C-Reactive Protein, Tumor Necrosis Factor-Alpha, Serum Interleukin-6 and White Matter Integrity Before and After the Treatment of Drug-Naïve Patients With Major Depressive Disorder. Front Neurosci 16:948637. https://doi.org/10.3389/fnins.2022.948637

  49. Chen B, Akshita J, Han P et al (2020) Aberrancies of brain network structures in patients with anosmia. Brain Topogr 33:403–411. https://doi.org/10.1007/s10548-020-00769-2

    Article  PubMed  Google Scholar 

  50. Seppi K, Ray Chaudhuri K, Coelho M et al (2019) Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord 34:180–198. https://doi.org/10.1002/mds.27602

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gao C, Liu J, Tan Y, Chen S (2020) Freezing of gait in Parkinson’s disease: pathophysiology, risk factors and treatments. Transl Neurodegener 9:12. https://doi.org/10.1186/s40035-020-00191-5

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen L, Hu X, Ouyang L et al (2016) A systematic review and meta-analysis of tract-based spatial statistics studies regarding attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 68:838–847. https://doi.org/10.1016/j.neubiorev.2016.07.022

    Article  PubMed  Google Scholar 

  53. Mander BA, Zhu AH, Lindquist JR et al (2017) White matter structure in older adults moderates the benefit of sleep spindles on motor memory consolidation. J Neurosci 37:11675–11687. https://doi.org/10.1523/JNEUROSCI.3033-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rau Y-A, Wang S-M, Tournier J-D, et al (2019) A longitudinal fixel-based analysis of white matter alterations in patients with Parkinson’s disease. NeuroImage: Clinical 24:102098. https://doi.org/10.1016/j.nicl.2019.102098

  55. Fernández-Miranda JC, Rhoton AL, Kakizawa Y et al (2008) The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study: Laboratory investigation. JNS 108:764–774. https://doi.org/10.3171/JNS/2008/108/4/0764

    Article  Google Scholar 

  56. Su W, Li K, Li C-M, et al (2021) Motor Symptom Lateralization Influences Cortico-Striatal Functional Connectivity in Parkinson’s Disease. Front Neurol 12:619631. https://doi.org/10.3389/fneur.2021.619631

  57. Gotts SJ, Jo HJ, Wallace GL et al (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci USA 110:E3435-3444. https://doi.org/10.1073/pnas.1302581110

    Article  PubMed  PubMed Central  Google Scholar 

  58. Di Tella S, Baglio F, Cabinio M et al (2018) Selection Processing in Noun and Verb Production in Left- and Right-Sided Parkinson’s Disease Patients. Front Psychol 9:1241. https://doi.org/10.3389/fpsyg.2018.01241

    Article  PubMed  PubMed Central  Google Scholar 

  59. Foster PS, Drago V, Crucian GP et al (2011) Anxiety and depression severity are related to right but not left onset Parkinson’s disease duration. J Neurol Sci 305:131–135. https://doi.org/10.1016/j.jns.2011.02.023

    Article  PubMed  Google Scholar 

  60. Verreyt N, Nys GMS, Santens P, Vingerhoets G (2011) Cognitive differences between patients with left-sided and right-sided Parkinson’s disease. A Review. Neuropsychol Rev 21:405–424. https://doi.org/10.1007/s11065-011-9182-x

    Article  PubMed  Google Scholar 

  61. Miller IN, Cronin-Golomb A (2010) Gender differences in Parkinson’s disease: clinical characteristics and cognition: gender differences in Parkinson’s disease. Mov Disord 25:2695–2703. https://doi.org/10.1002/mds.23388

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bentivoglio AR, Lo Monaco MR, Liperoti R, et al (2021) Gender may be related to the side of the motor syndrome and cognition in idiopathic Parkinson’s disease. Neurologia (Engl Ed) 13:S0213–4853(21)00025–6. https://doi.org/10.1016/j.nrl.2021.01.009

  63. Adwani S, Yadav R, Kumar K et al (2016) Neuropsychological profile in early Parkinson′s disease: comparison between patients with right side onset versus left side onset of motor symptoms. Ann Indian Acad Neurol 19:74. https://doi.org/10.4103/0972-2327.167711

    Article  PubMed  PubMed Central  Google Scholar 

  64. Voruz P, Pierce J, Ahrweiller K et al (2022) Motor symptom asymmetry predicts non-motor outcome and quality of life following STN DBS in Parkinson’s disease. Sci Rep 12:3007. https://doi.org/10.1038/s41598-022-07026-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bove F, Cavallieri F, Castrioto A, et al (2022) Does Motor Symptoms Asymmetry Predict Motor Outcome of Subthalamic Deep Brain Stimulation in Parkinson’s Disease Patients? Front Hum Neurosci 16:931858. https://doi.org/10.3389/fnhum.2022.931858

  66. Hershey T, Wu J, Weaver PM et al (2008) Unilateral vs. bilateral STN DBS effects on working memory and motor function in Parkinson disease. Exp Neurol 210:402–408. https://doi.org/10.1016/j.expneurol.2007.11.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative database (www.ppmi-info.org/data). For up-to-date information on the study, visit http://www.ppmi-info.org. PPMI, a public-private partnership, is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including , including 4D Pharma; AbbVie Inc.; AcureX Therapeutics; Allergan; Amathus Therapeutics; Aligning Science Across Parkinson’s (ASAP); Avid Radiopharmaceuticals; Bial Biotech; Biogen; BioLegend; Bristol Myers Squibb; Calico Life Sciences LLC; Celgene Corporation; DaCapo Brainscience; Denali Therapeutics; the Edmond J. Safra Foundation; Eli Lilly and Company; GE Healthcare; GlaxoSmithKline; Golub Capital; Handl Therapeutics; Insitro; Janssen Pharmaceuticals; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; Neurocrine Biosciences; Pfizer Inc.; Piramal Imaging; Prevail Therapeutics; F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc.; Sanofi Genzyme; Servier; Takeda Pharmaceutical Company; Teva Neuroscience, Inc.; UCB, Vanqua Bio; Verily Life Sciences; Voyager Therapeutics, Inc.; and Yumanity Therapeutics, Inc (http://www.ppmi-info.org/fundingpartners).

Funding

This study was supported by National Natural Science Foundation of China (grant number: 82001367, receiver: Xi Liu), Natural Science Foundation of Chongqing (grant number: cstc2021jcyj-msxmX0180, receiver: Xi Liu), Kuanren Talent Program of The Second Affiliated Hospital of Chongqing Medical University (receiver: Xi Liu), and Scientific and Technological Research Program of Chongqing Municipal Education Commission (grant number: KJQN202200417, receiver: Changhong Tan).

Author information

Authors and Affiliations

Authors

Contributions

YZ: Data Curation (lead); Formal Analysis (lead); Investigation (lead); Methodology (lead); Software (lead); Validation (lead); Visualization (lead); Writing—Original Draft Preparation (equal). SL: Data Curation (supporting); Investigation (supporting); Validation (supporting). XD: Data Curation (supporting); Investigation (supporting); Validation (supporting). HL: Data Curation (supporting); Investigation (supporting); Validation (supporting). CT: Formal Analysis (supporting); Funding Acquisition (supporting). XL: Conceptualization (lead); Formal Analysis (supporting); Funding Acquisition (lead); Methodology (supporting); Software (supporting); Supervision (equal); Visualization (supporting); Writing—Original Draft Preparation (equal); Writing—Review & Editing (equal). FD: Conceptualization (supporting); Project Administration (equal); Resources (equal); Supervision (equal); Writing—Review & Editing (equal). LC: Project Administration (equal); Resources (equal); Supervision (equal). All authors read and approved the fnal manuscript.

Corresponding authors

Correspondence to Xi Liu or Fen Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The PPMI study has been approved by the respective institutional review boards of all participating sites, and written informed consents were obtained from each participant. This study was also approved by the Ethics Committee of The Second Affiliated Hospital of Chongqing Medical University (2022–759), written consents were also obtained from each participant.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11400 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, S., Da, X. et al. Study of the relationship between onset lateralization and hemispheric white matter asymmetry in Parkinson's disease. J Neurol 270, 5004–5016 (2023). https://doi.org/10.1007/s00415-023-11849-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11849-1

Keywords

Navigation