Skip to main content

Advertisement

Log in

Application of deep-learning to the seronegative side of the NMO spectrum

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objectives

To apply a deep-learning algorithm to brain MRIs of seronegative patients with neuromyelitis optica spectrum disorders (NMOSD) and NMOSD-like manifestations and assess whether their structural features are similar to aquaporin-4-seropositive NMOSD or multiple sclerosis (MS) patients.

Patients and methods

We analyzed 228 T2- and T1-weighted brain MRIs acquired from aquaporin-4-seropositive NMOSD (n = 85), MS (n = 95), aquaporin-4-seronegative NMOSD [n = 11, three with anti-myelin oligodendrocyte glycoprotein antibodies (MOG)], and aquaporin-4-seronegative patients with NMOSD-like manifestations (idiopathic recurrent optic neuritis and myelitis, n = 37), who were recruited from February 2010 to December 2019. Seventy-three percent of aquaporin-4-seronegative patients with NMOSD-like manifestations also had a clinical follow-up (median duration of 4 years). The deep-learning neural network architecture was based on four 3D convolutional layers. It was trained and validated on MRI scans of aquaporin-4-seropositive NMOSD and MS patients and was then applied to aquaporin-4-seronegative NMOSD and NMOSD-like manifestations. Assignment of unclassified aquaporin-4-seronegative patients was compared with their clinical follow-up.

Results

The final algorithm differentiated aquaporin-4-seropositive NMOSD and MS patients with an accuracy of 0.95. All aquaporin-4-seronegative NMOSD and 36/37 aquaporin-4-seronegative patients with NMOSD-like manifestations were classified as NMOSD. Anti-MOG patients had a similar probability of being NMOSD or MS. At clinical follow-up, one unclassified aquaporin-4-seronegative patient evolved to MS, three developed NMOSD, and the others did not change phenotype.

Conclusions

Our findings support the inclusion of aquaporin4-seronegative patients into NMOSD and suggest a possible expansion to aquaporin-4-seronegative unclassified patients with NMOSD-like manifestations. Anti-MOG patients are likely to have intermediate brain features between NMOSD and MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dataset analyzed and the final algorithm are available on reasonable request.

References

  1. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, de Seze J, Fujihara K, Greenberg B, Jacob A, Jarius S, Lana-Peixoto M, Levy M, Simon JH, Tenembaum S, Traboulsee AL, Waters P, Wellik KE, Weinshenker BG (2015) NMOD international panel for, international consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85(2):177–189

    Article  Google Scholar 

  2. Hamid SH, Elsone L, Mutch K, Solomon T, Jacob A (2017) The impact of 2015 neuromyelitis optica spectrum disorders criteria on diagnostic rates. Mult Scler 23(2):228–233

    Article  Google Scholar 

  3. Hyun JW, Jeong IH, Joung A, Kim SH, Kim HJ (2016) Evaluation of the 2015 diagnostic criteria for neuromyelitis optica spectrum disorder. Neurology 86(19):1772–1779

    Article  Google Scholar 

  4. Ratelade J, Verkman AS (2012) Neuromyelitis optica: aquaporin-4 based pathogenesis mechanisms and new therapies. Int J Biochem Cell Biol 44(9):1519–1530

    Article  CAS  Google Scholar 

  5. Papadopoulos MC, Verkman AS (2012) Aquaporin 4 and neuromyelitis optica. Lancet Neurol 11(6):535–544

    Article  CAS  Google Scholar 

  6. Waschbisch A, Atiya M, Schaub C, Derfuss T, Schwab S, Lee DH, Muller M, Linker RA (2013) Aquaporin-4 antibody negative recurrent isolated optic neuritis: clinical evidence for disease heterogeneity. J Neurol Sci 331(1–2):72–75

    Article  CAS  Google Scholar 

  7. Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, Kleiter I, Kleinschnitz C, Berthele A, Brettschneider J, Hellwig K, Hemmer B, Linker RA, Lauda F, Mayer CA, Tumani H, Melms A, Trebst C, Stangel M, Marziniak M, Hoffmann F, Schippling S, Faiss JH, Neuhaus O, Ettrich B, Zentner C, Guthke K, Hofstadt-van Oy U, Reuss R, Pellkofer H, Ziemann U, Kern P, Wandinger KP, Bergh FT, Boettcher T, Langel S, Liebetrau M, Rommer PS, Niehaus S, Munch C, Winkelmann A, Zettl UU, Metz I, Veauthier C, Sieb JP, Wilke C, Hartung HP, Aktas O, Paul F (2012) Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflamm 9:14

    Article  CAS  Google Scholar 

  8. Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, Pache F, Stich O, Beume LA, Hummert MW, Ringelstein M, Trebst C, Winkelmann A, Schwarz A, Buttmann M, Zimmermann H, Kuchling J, Franciotta D, Capobianco M, Siebert E, Lukas C, Korporal-Kuhnke M, Haas J, Fechner K, Brandt AU, Schanda K, Aktas O, Paul F, Reindl M, Wildemann B, Neuromyelitis Optica Study (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflamm 13(1):280

    Article  Google Scholar 

  9. Cobo-Calvo A, Ruiz A, Maillart E, Audoin B, Zephir H, Bourre B, Ciron J, Collongues N, Brassat D, Cotton F, Papeix C, Durand-Dubief F, Laplaud D, Deschamps R, Cohen M, Biotti D, Ayrignac X, Tilikete C, Thouvenot E, Brochet B, Dulau C, Moreau T, Tourbah A, Lebranchu P, Michel L, Lebrun-Frenay C, Montcuquet A, Mathey G, Debouverie M, Pelletier J, Labauge P, Derache N, Coustans M, Rollot F, De Seze J, Vukusic S, Marignier R, Ofsep, N.S. Group (2018) Clinical spectrum and prognostic value of CNS MOG autoimmunity in adults: the MOGADOR study. Neurology 90(21):e1858–e1869

    Article  CAS  Google Scholar 

  10. Matthews L, Marasco R, Jenkinson M, Kuker W, Luppe S, Leite MI, Giorgio A, De Stefano N, Robertson N, Johansen-Berg H, Evangelou N, Palace J (2013) Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 80(14):1330–1337

    Article  Google Scholar 

  11. Cacciaguerra L, Meani A, Mesaros S, Radaelli M, Palace J, Dujmovic-Basuroski I, Pagani E, Martinelli V, Matthews L, Drulovic J, Leite MI, Comi G, Filippi M, Rocca MA (2019) Brain and cord imaging features in neuromyelitis optica spectrum disorders. Ann Neurol 85(3):371–384

    Article  Google Scholar 

  12. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  Google Scholar 

  13. McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, Tridandapani S, Auffermann WF (2018) Deep learning in radiology. Acad Radiol 25(11):1472–1480

    Article  Google Scholar 

  14. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintore M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173

    Article  Google Scholar 

  15. Tobin WO, Weinshenker BG, Lucchinetti CF (2014) Longitudinally extensive transverse myelitis. Curr Opin Neurol 27(3):279–289

    Article  Google Scholar 

  16. Transverse Myelitis Consortium Working (2002) Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 59(4):499–505

    Article  Google Scholar 

  17. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452

    Article  CAS  Google Scholar 

  18. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: proceedings of the IEEE conference on computer vision and pattern recognition, p 770-778

  19. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC (2015) ImageNet large scale visual recognition challenge. Int J Comp Vis 115(3):211–252

    Article  Google Scholar 

  20. Hinton VNG (2010) Rectified linear units improve restricted Boltzmann machines. In: international conference on machine learning, Haifa, Israel

  21. Gu HWX (2015) Max-pooling dropout for regularization of convolutional neural networks. In: F.U. Department of Electronic Engineering, Shanghai 200433, China

  22. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    Google Scholar 

  23. Basha SS, Dubey SR, Pulabaigari V, Mukherjee S (2020) Impact of fully connected layers on the performance of convolutional neural networks for image classification. Neurocomputing 378:112–119

    Article  Google Scholar 

  24. Lecun LBY, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  25. Kingma DP, Adam BJ (2015) A method for stochastic optimization. In: 3rd international conference for learning representations, San Diego, USA

  26. Yuan LRY, Caponnetto A (2007) On early stopping in gradient descent learning. Constr Approx 26(2):289–315

    Article  Google Scholar 

  27. Jurynczyk M, Tackley G, Kong Y, Geraldes R, Matthews L, Woodhall M, Waters P, Kuker W, Craner M, Weir A, DeLuca GC, Kremer S, Leite MI, Vincent A, Jacob A, de Seze J, Palace J (2017) Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease. J Neurol Neurosurg Psychiatry 88(2):132–136

    Article  Google Scholar 

  28. Solomon AJ, Bourdette DN, Cross AH, Applebee A, Skidd PM, Howard DB, Spain RI, Cameron MH, Kim E, Mass MK, Yadav V, Whitham RH, Longbrake EE, Naismith RT, Wu GF, Parks BJ, Wingerchuk DM, Rabin BL, Toledano M, Tobin WO, Kantarci OH, Carter JL, Keegan BM, Weinshenker BG (2016) The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology 87(13):1393–1399

    Article  Google Scholar 

  29. Eshaghi A, Wottschel V, Cortese R, Calabrese M, Sahraian MA, Thompson AJ, Alexander DC, Ciccarelli O (2016) Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology 87(23):2463–2470

    Article  Google Scholar 

  30. Do Rego CA, Collongues N (2018) Neuromyelitis optica spectrum disorders: features of aquaporin-4, myelin oligodendrocyte glycoprotein and double-seronegative-mediated subtypes. Revue Neurol 174(6):458–470

    Article  Google Scholar 

  31. Wei Y, Chang H, Li X, Du L, Xu W, Cong H, Yao Y, Zhang X, Yin L (2018) CSF-S100B is a potential candidate biomarker for neuromyelitis optica spectrum disorders. Biomed Res Int 2018:5381239

    PubMed  PubMed Central  Google Scholar 

  32. Mealy MA, Kim SH, Schmidt F, Lopez R, Jimenez Arango JA, Paul F, Wingerchuk DM, Greenberg BM, Kim HJ, Levy M (2018) Aquaporin-4 serostatus does not predict response to immunotherapy in neuromyelitis optica spectrum disorders. Mult Scler 24(13):1737–1742

    Article  CAS  Google Scholar 

  33. Wang X, Chen X, Zhu C, Ma H, Wang F, Qin L, Li W (2018) A multi-facet comparative analysis of neuromyelitis optica spectrum disorders in patients with seropositive and seronegative AQP4-IgG. Medicine 97(48):e13100

    Article  Google Scholar 

  34. Sun J, Sun X, Zhang N, Wang Q, Cai H, Qi Y, Li T, Qin W, Yu C (2017) Analysis of brain and spinal cord lesions to occult brain damage in seropositive and seronegative neuromyelitis optica. Eur J Radiol 94:25–30

    Article  Google Scholar 

  35. Petzold A, Woodhall M, Khaleeli Z, Tobin WO, Pittock SJ, Weinshenker BG, Vincent A, Waters P, Plant GT (2019) Aquaporin-4 and myelin oligodendrocyte glycoprotein antibodies in immune-mediated optic neuritis at long-term follow-up. J Neurol Neurosurg Psychiatry 90(9):1021–1026

    Article  Google Scholar 

  36. Jiao Y, Fryer JP, Lennon VA, McKeon A, Jenkins SM, Smith CY, Quek AM, Weinshenker BG, Wingerchuk DM, Shuster EA, Lucchinetti CF, Pittock SJ (2014) Aquaporin 4 IgG serostatus and outcome in recurrent longitudinally extensive transverse myelitis. JAMA Neurol 71(1):48–54

    Article  Google Scholar 

  37. Alvarenga MP, Alvarenga RM, Alvarenga MP, Santos AM, Thuler LC (2012) Anti-AQP(4) antibody in idiopathic acute transverse myelitis with recurrent clinical course: frequency of positivity and influence in prognosis. J Spinal Cord Med 35(4):251–255

    Article  Google Scholar 

  38. Deschamps R, Gueguen A, Lecler A, Lecouturier K, Lamirel C, Bensa C, Marignier R, Vignal C, Gout O (2018) Acute idiopathic optic neuritis: not always benign. Eur J Neurol 25(11):1378–1383

    Article  CAS  Google Scholar 

  39. Carnero Contentti E, Hryb JP, Morales S, Gomez A, Chiganer E, Di Pace JL, Lessa C, Perassolo M (2017) Longitudinally extensive transverse myelitis immune-mediated in aquaporin-4 antibody negative patients: disease heterogeneity. J Neurol Sci 373:134–137

    Article  CAS  Google Scholar 

  40. Takahashi-Fujigasaki J, Takagi S, Sakamoto T, Inoue K (2009) Spinal cord biopsy findings of anti-aquaporin-4 antibody-negative recurrent longitudinal myelitis in a patient with sicca symptoms and hepatitis C viral infection. Neuropathology 29(4):472–479

    Article  Google Scholar 

  41. Castelvecchi D (2016) Can we open the black box of AI? Nature 538(7623):20–23

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

LC: data analysis, statistical analysis, drafting/revising the manuscript. LS: data analysis, statistical analysis, drafting/revising the manuscript. MR: patient recruitment, clinical assessment, data analysis. SM: patient recruitment, clinical assessment, data analysis. LM: patient recruitment, clinical assessment, data analysis. JD: patient recruitment, clinical assessment, data analysis. MF: study concept, drafting/revising the manuscript. MAR: study concept, drafting/revising the manuscript, MRI data analysis.

Corresponding author

Correspondence to Maria A. Rocca.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics committee approval

Approval was received from the local ethical standards committee (IRCCS San Raffaele Scientific Institute) on human experimentation. The study conforms to the Declaration of Helsinki.

Consent to participate

All subjects signed a written informed consent before study participation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciaguerra, L., Storelli, L., Radaelli, M. et al. Application of deep-learning to the seronegative side of the NMO spectrum. J Neurol 269, 1546–1556 (2022). https://doi.org/10.1007/s00415-021-10727-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10727-y

Keywords

Navigation