Skip to main content
Log in

Effects of perceptible and imperceptible galvanic vestibular stimulation on the postural control of patients with bilateral vestibulopathy

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Galvanic vestibular stimulation (GVS) has increasingly been used to stimulate the vestibular system in health and disease. While perceptible supra-threshold GVS destabilizes postural control in healthy control (HC) subjects, imperceptible ‘noisy’ GVS (nGVS) is reported to improve postural control in patients with bilateral vestibulopathy (BV) and therapeutic devices using nGVS are currently under development. We questioned (1) whether perceptible GVS destabilizes postural control of BV patients, expecting any effect to be smaller than in healthy subjects due to the patients’ vestibulopathy, and (2) whether imperceptible nGVS improves postural control in comparison to an active sham stimulus in context-dependent conditions, hypothesizing that it fades off once postural control becomes more challenging with respect to its sensory (standing on foam) or cognitive (dual task) complexity. We tested postural responses of 30 BV patients to bimastoidal perceptible (lowGVS, highGVS) or imperceptible (nGVS, sham, noGVS) GVS in comparison to 24 age-matched HC. Perceptible GVS intensities were applied according to the participants’ individual motion perception thresholds. Postural sway speed (PSS) was analyzed in a 4-factorial experimental design with the factors group (BV, HC), vision (eyes open/closed), condition (baseline, proprioception, cognition) and stimulation (noGVS, sham, nGVS, lowGVS, highGVS). With eyes open (EO), there were no group-related PSS differences in the baseline and cognition condition in response to either stimulations. With EO on foam and with eye closed (EC) in all conditions, patients showed larger PSS than HC, irrespective of the stimulation type. PSS differed with GVS intensities within each group but not between the groups. PSS under nGVS on EC was only smaller in patients when compared to perceptible GVS, but it was not different from noGVS or sham stimulation. Moreover, this nGVS effect was only found in the baseline but not in the more challenging dual task and foam condition. Almost half of the patients showed higher individual thresholds of motion perception of GVS compared to HC. Interestingly, this high-threshold subgroup showed significantly larger PSS with EC as compared to HC and the low-threshold patient subgroup, although both patient subgroups did not differ in vestibular parameters. We conclude, first, that perceptible GVS is able to destabilize BV patients similarly to HC subjects, suggesting sufficient vestibular afferent processing of GVS during vestibulo-spinal postural control. Second, the effect of the hitherto observed improved postural control by nGVS appears to be small during more demanding postural control conditions (foam, cognitive distraction) that are closer to the patients’ everyday life, when active sham stimuli are used as control stimuli. These findings underline the meaning of active control conditions when the efficacy of nGVS is tested, e.g. in portable GVS devices in the attempt to improve postural control in BV patients. However, differential GVS effects on vestibulo-perceptional and vestibulo-spinal thresholds should be taken into account. Finally, our data suggest that individual motion perception thresholds for GVS could potentially serve as a predictor of postural control safety and falling risk in BV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BV:

Bilateral vestibulopathy

HC:

Healthy control

VOR:

Vestibulo-ocular reflex

VSS:

Vertigo symptom scale

DHI:

Dizziness handicap score

CVS:

Clinical vestibular score

SVV:

Subjective visual vertical

LTG:

Low-threshold group

HTG:

High-threshold group

EO:

Eyes open

EC:

Eyes closed

GVS:

Galvanic vestibular stimulation

nGVS:

Noisy GVS

References

  1. Asslander L, Peterka RJ (2016) Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues. J Neurophysiol 116:272–285

    PubMed  PubMed Central  Google Scholar 

  2. Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899

    CAS  PubMed  Google Scholar 

  3. Brandt T, Dieterich M (2019) 'Excess anxiety' and 'less anxiety': both depend on vestibular function. Curr Opin Neurol 33:136–141

    Google Scholar 

  4. Cai J, Lee S, Ba F, Garg S, Kim LJ, Liu A, Kim D, Wang ZJ, McKeown MJ (2018) Galvanic vestibular stimulation (GVS) augments deficient pedunculopontine nucleus (PPN) connectivity in mild Parkinson's disease: fMRI effects of different stimuli. Front Neurosci 12:101

    PubMed  PubMed Central  Google Scholar 

  5. Cathers I, Day BL, Fitzpatrick RC (2005) Otolith and canal reflexes in human standing. J Physiol 563:229–234

    CAS  PubMed  Google Scholar 

  6. Collins JJ, Chow CC, Imhoff TT (1995) Stochastic resonance without tuning. Nature 376:236–238

    CAS  PubMed  Google Scholar 

  7. Cutfield NJ, Scott G, Waldman AD, Sharp DJ, Bronstein AM (2014) Visual and proprioceptive interaction in patients with bilateral vestibular loss. Neuroimage Clin 4:274–282

    PubMed  PubMed Central  Google Scholar 

  8. Cyran CA, Boegle R, Stephan T, Dieterich M, Glasauer S (2016) Age-related decline in functional connectivity of the vestibular cortical network. Brain Struct Funct 221:1443–1463

    PubMed  Google Scholar 

  9. Dlugaiczyk J, Gensberger KD, Straka H (2019) Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol 121:2237–2255

    CAS  PubMed  Google Scholar 

  10. Donker SF, Roerdink M, Greven AJ, Beek PJ (2007) Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 181:1–11

    PubMed  PubMed Central  Google Scholar 

  11. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Google Scholar 

  12. Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol (1985) 96:2301–2316

    Google Scholar 

  13. Fitzpatrick RC, Marsden J, Lord SR, Day BL (2002) Galvanic vestibular stimulation evokes sensations of body rotation. NeuroReport 13:2379–2383

    PubMed  Google Scholar 

  14. Fitzpatrick RC, Wardman DL, Taylor JL (1999) Effects of galvanic vestibular stimulation during human walking. J Physiol 517(Pt 3):931–939

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, Iwasaki S (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 9:900

    PubMed  PubMed Central  Google Scholar 

  16. Fujimoto C, Egami N, Kinoshita M, Sugasawa K, Yamasoba T, Iwasaki S (2014) Postural stability in vestibular neuritis: age, disease duration, and residual vestibular function. Laryngoscope 124:974–979

    PubMed  Google Scholar 

  17. Fujimoto C, Murofushi T, Chihara Y, Ushio M, Suzuki M, Yamaguchi T, Yamasoba T, Iwasaki S (2013) Effect of severity of vestibular dysfunction on postural instability in idiopathic bilateral vestibulopathy. Acta Otolaryngol 133:454–461

    PubMed  Google Scholar 

  18. Fujimoto C, Yagi M, Murofushi T (2019) Recent advances in idiopathic bilateral vestibulopathy: a literature review. Orphanet J Rare Dis 14:202

    PubMed  PubMed Central  Google Scholar 

  19. Fujimoto C, Yamamoto Y, Kamogashira T, Kinoshita M, Egami N, Uemura Y, Togo F, Yamasoba T, Iwasaki S (2016) Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6:37575

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghofrani M, Olyaei G, Talebian S, Bagheri H, Malmir K (2017) Test–retest reliability of linear and nonlinear measures of postural stability during visual deprivation in healthy subjects. J Phys Ther Sci 29:1766–1771

    PubMed  PubMed Central  Google Scholar 

  21. Goel R, Kofman I, Jeevarajan J, De Dios Y, Cohen HS, Bloomberg JJ, Mulavara AP (2015) Using low levels of stochastic vestibular stimulation to improve balance function. PLoS ONE 10:e0136335

    PubMed  PubMed Central  Google Scholar 

  22. Goel R, Rosenberg MJ, Cohen HS, Bloomberg JJ, Mulavara AP (2019) Calibrating balance perturbation using electrical stimulation of the vestibular system. J Neurosci Methods 311:193–199

    CAS  PubMed  Google Scholar 

  23. Gottlich M, Jandl NM, Wojak JF, Sprenger A, von der Gablentz J, Munte TF, Kramer UM, Helmchen C (2014) Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure. Neuroimage Clin 4:488–499

    PubMed  PubMed Central  Google Scholar 

  24. Guerraz M, Day BL (2005) Expectation and the vestibular control of balance. J Cogn Neurosci 17:463–469

    PubMed  Google Scholar 

  25. Haburcakova C, Lewis RF, Merfeld DM (2012) Frequency dependence of vestibuloocular reflex thresholds. J Neurophysiol 107:973–983

    PubMed  Google Scholar 

  26. Helmchen C, Kirchhoff JB, Gottlich M, Sprenger A (2017) Postural ataxia in cerebellar downbeat nystagmus: its relation to visual, proprioceptive and vestibular signals and cerebellar atrophy. PLoS ONE 12:e0168808

    PubMed  PubMed Central  Google Scholar 

  27. Helmchen C, Knauss J, Trillenberg P, Frendl A, Sprenger A (2017) Role of the patient's history of vestibular symptoms in the clinical evaluation of the Bedside Head-Impulse Test. Front Neurol 8:51

    PubMed  PubMed Central  Google Scholar 

  28. Helmchen C, Rother M, Spliethoff P, Sprenger A (2019) Increased brain responsivity to galvanic vestibular stimulation in bilateral vestibular failure. Neuroimage Clin 24:101942

    PubMed  PubMed Central  Google Scholar 

  29. Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG (2014) Modulation of human vestibular reflexes with increased postural threat. J Physiol Lond 592:3671–3685

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Inukai Y, Otsuru N, Masaki M, Saito K, Miyaguchi S, Kojima S, Onishi H (2018) Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimul 11:85–93

    PubMed  Google Scholar 

  31. Ivanenko Y, Gurfinkel VS (2018) Human postural control. Front Neurosci 12:171

    PubMed  PubMed Central  Google Scholar 

  32. Iwasaki S, Karino S, Kamogashira T, Togo F, Fujimoto C, Yamamoto Y, Yamasoba T (2017) Effect of noisy galvanic vestibular stimulation on ocular vestibular-evoked myogenic potentials to bone-conducted vibration. Front Neurol 8:26

    PubMed  PubMed Central  Google Scholar 

  33. Iwasaki S, Yamamoto Y, Togo F, Kinoshita M, Yoshifuji Y, Fujimoto C, Yamasoba T (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975

    PubMed  Google Scholar 

  34. Jorns-Haderli M, Straumann D, Palla A (2007) Accuracy of the bedside head impulse test in detecting vestibular hypofunction. J Neurol Neurosurg Psychiatry 78:1113–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Keywan A, Badarna H, Jahn K, Wuehr M (2020) No evidence for after-effects of noisy galvanic vestibular stimulation on motion perception. Sci Rep 10:2545

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Keywan A, Jahn K, Wuehr M (2019) Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception. Neuroscience 399:161–166

    CAS  PubMed  Google Scholar 

  37. Keywan A, Wuehr M, Pradhan C, Jahn K (2018) Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects. Front Neurol 9:83

    PubMed  PubMed Central  Google Scholar 

  38. Kwan A, Forbes PA, Mitchell DE, Blouin JS, Cullen KE (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun 10:1904

    PubMed  PubMed Central  Google Scholar 

  39. Lim SB, Cleworth TW, Horslen BC, Blouin JS, Inglis JT, Carpenter MG (2017) Postural threat influences vestibular-evoked muscular responses. J Neurophysiol 117:604–611

    PubMed  Google Scholar 

  40. Lobel E, Kleine JF, Bihan DL, Leroy-Willig A, Berthoz A (1998) Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80:2699–2709

    CAS  PubMed  Google Scholar 

  41. Lund S, Broberg C (1983) Effects of different head positions on postural sway in man induced by a reproducible vestibular error signal. Acta Physiol Scand 117:307–309

    CAS  PubMed  Google Scholar 

  42. MacDougall HG, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with galvanic vestibular stimulation. Exp Brain Res 172:208–220

    PubMed  Google Scholar 

  43. Machner B, Sprenger A, Fullgraf H, Trillenberg P, Helmchen C (2013) Video-based head impulse test. Importance for routine diagnostics of patients with vertigo. Der Nervenarzt 84:975–983

    CAS  PubMed  Google Scholar 

  44. Massot C, Schneider AD, Chacron MJ, Cullen KE (2012) The vestibular system implements a linear-nonlinear transformation in order to encode self-motion. PLoS Biol 10:e1001365

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mian OS, Dakin CJ, Blouin JS, Fitzpatrick RC, Day BL (2010) Lack of otolith involvement in balance responses evoked by mastoid electrical stimulation. J Physiol 588:4441–4451

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281

    PubMed  Google Scholar 

  47. Nooristani M, Maheu M, Houde MS, Bacon BA, Champoux F (2019) Questioning the lasting effect of galvanic vestibular stimulation on postural control. PLoS ONE 14:e0224619

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Potvin-Desrochers A, Richer N, Lajoie Y (2017) Cognitive tasks promote automatization of postural control in young and older adults. Gait Posture 57:40–45

    PubMed  Google Scholar 

  49. Priesol AJ, Valko Y, Merfeld DM, Lewis RF (2014) Motion perception in patients with idiopathic bilateral vestibular hypofunction. Otolaryngol Head Neck Surg 150:1040–1042

    PubMed  Google Scholar 

  50. Ramos Macias A, Ramos de Miguel A, Rodriguez Montesdeoca I, Borkoski Barreiro S, Falcon Gonzalez JC (2019) Chronic electrical stimulation of the otolith organ: preliminary results in humans with bilateral vestibulopathy and sensorineural hearing loss. Audiol Neurootol 25(1–2):79–90

    PubMed  Google Scholar 

  51. Raymakers JA, Samson MM, Verhaar HJ (2005) The assessment of body sway and the choice of the stability parameter(s). Gait Posture 21:48–58

    CAS  PubMed  Google Scholar 

  52. Richer N, Lajoie Y (2020) Automaticity of postural control while dual-tasking revealed in young and older adults. Exp Aging Res 46:1–21

    PubMed  Google Scholar 

  53. Rinalduzzi S, Cipriani AM, Capozza M, Accornero N (2011) Postural responses to low-intensity, short-duration, galvanic vestibular stimulation as a possible differential diagnostic procedure. Acta Neurol Scand 123:111–116

    CAS  PubMed  Google Scholar 

  54. Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 265:57–62

    CAS  PubMed  Google Scholar 

  55. Sprenger A, Steinhaus S, Helmchen C (2017) Postural control during recall of vestibular sensation in patients with functional dizziness and unilateral vestibulopathy. J Neurol 264:42–44

    PubMed  Google Scholar 

  56. Sprenger A, Wojak JF, Jandl NM, Helmchen C (2017) Postural control in bilateral vestibular failure: its relation to visual, proprioceptive, vestibular, and cognitive input. Front Neurol 8:444

    PubMed  PubMed Central  Google Scholar 

  57. Sprenger A, Wojak JF, Jandl NM, Hertel S, Helmchen C (2014) Predictive mechanisms improve the vestibulo-ocular reflex in patients with bilateral vestibular failure. J Neurol 261:628–631

    PubMed  Google Scholar 

  58. St-Amant G, Rahman T, Polskaia N, Fraser S, Lajoie Y (2020) Unveilling the cerebral and sensory contributions to automatic postural control during dual-task standing. Hum Mov Sci 70:102587

    PubMed  Google Scholar 

  59. Stephan T, Deutschlander A, Nolte A, Schneider E, Wiesmann M, Brandt T, Dieterich M (2005) Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage 26:721–732

    PubMed  Google Scholar 

  60. Strupp M, Kim JS, Murofushi T, Straumann D, Jen JC, Rosengren SM, Della Santina CC, Kingma H (2017) Bilateral vestibulopathy: diagnostic criteria consensus document of the classification committee of the Barany Society. J Vestib Res 27:177–189

    PubMed  Google Scholar 

  61. Tax CM, Bom AP, Taylor RL, Todd N, Cho KK, Fitzpatrick RC, Welgampola MS (2013) The galvanic whole-body sway response in health and disease. Clin Neurophysiol 124:2036–2045

    PubMed  Google Scholar 

  62. Tschan R, Wiltink J, Best C, Bense S, Dieterich M, Beutel ME, Eckhardt-Henn A (2008) Validation of the German version of the Vertigo Symptom Scale (VSS) in patients with organic or somatoform dizziness and healthy controls. J Neurol 255:1168–1175

    CAS  PubMed  Google Scholar 

  63. Volkening K, Bergmann J, Keller I, Wuehr M, Muller F, Jahn K (2014) Verticality perception during and after galvanic vestibular stimulation. Neurosci Lett 581:75–79

    CAS  PubMed  Google Scholar 

  64. Welgampola MS, Ramsay E, Gleeson MJ, Day BL (2013) Asymmetry of balance responses to monaural galvanic vestibular stimulation in subjects with vestibular schwannoma. Clin Neurophysiol 124:1835–1839

    PubMed  PubMed Central  Google Scholar 

  65. Woll J, Sprenger A, Helmchen C (2019) Postural control during galvanic vestibular stimulation in patients with persistent perceptual–postural dizziness. J Neurol 266:1236–1249

    PubMed  Google Scholar 

  66. Wuehr M, Boerner JC, Pradhan C, Decker J, Jahn K, Brandt T, Schniepp R (2018) Stochastic resonance in the human vestibular system—noise-induced facilitation of vestibulospinal reflexes. Brain Stimul 11:261–263

    CAS  PubMed  Google Scholar 

  67. Wuehr M, Decker J, Schniepp R (2017) Noisy galvanic vestibular stimulation: an emerging treatment option for bilateral vestibulopathy. J Neurol 264:81–86

    PubMed  Google Scholar 

  68. Wuehr M, Nusser E, Krafczyk S, Straube A, Brandt T, Jahn K, Schniepp R (2016) Noise-enhanced vestibular input improves dynamic walking stability in healthy subjects. Brain Stimul 9:109–116

    CAS  PubMed  Google Scholar 

  69. Yardley L, Masson E, Verschuur C, Haacke N, Luxon L (1992) Symptoms, anxiety and handicap in dizzy patients: development of the Vertigo Symptom Scale. J Psychosom Res 36:731–741

    CAS  PubMed  Google Scholar 

  70. Zingler VC, Cnyrim C, Jahn K, Weintz E, Fernbacher J, Frenzel C, Brandt T, Strupp M (2007) Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann Neurol 61:524–532

    PubMed  Google Scholar 

  71. Zingler VC, Weintz E, Jahn K, Mike A, Huppert D, Rettinger N, Brandt T, Strupp M (2008) Follow-up of vestibular function in bilateral vestibulopathy. J Neurol Neurosurg Psychiatry 79:284–288

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Sprenger.

Ethics declarations

Conflicts of interest

None.

Ethical standard

The studies involving human participants were reviewed and approved by Ethics Committee of the Universität zu Lübeck (#17-036). The patients/participants provided their written informed consent to participate in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprenger, A., Spliethoff, P., Rother, M. et al. Effects of perceptible and imperceptible galvanic vestibular stimulation on the postural control of patients with bilateral vestibulopathy. J Neurol 267, 2383–2397 (2020). https://doi.org/10.1007/s00415-020-09852-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-09852-x

Keywords

Navigation