Skip to main content

Advertisement

Log in

TGFBR2 mutation and MTHFR-C677T polymorphism in a Mexican mestizo population with cervico-cerebral artery dissection

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Spontaneous cervico-cerebral artery dissection (CCAD) is a common condition found among young patients with ischemic stroke. We examined the possible association between the polymorphism of methylenetetrahydrofolate reductase (MTHFR)-C677T and the gene mutation in transforming growth factor beta receptor II (TGFBR2) in a cohort of CCAD patients. One-hundred CCAD cases (65 males; mean age: 38.08 ± 10.68 years) and 100 matching controls were included. Ancestry informative markers (AIMs) were used to increase internal validity of the genetic analysis. Genotypes of the C677T polymorphism in the MTHFR gene were determined by polymerase chain reaction and restriction fragment length polymorphism; direct sequencing was used for a mutation analysis of the TGFBR2 gene. Associations were evaluated using a multivariate statistics, and Hardy–Weinberg equilibrium was analyzed. We also incorporated our data into a meta-analysis of the MTHFR-C677T. Sixty-three patients presented with vertebral and 37 with carotid artery dissection. Ancestry markers found a call rate on each over 95 %. All AIMs did not deviate from Hardy–Weinberg equilibrium (p > 0.05). The homozygous TT genotype was more frequent in cases (OR 2.04, CI 95 % 1.53–2.72, p = 0.005), whereas no significant difference was found on heterozygous CT genotype. TGFBR2 mutation was not present in our samples. In the meta-analysis of MTHFR/C677T variant, a total 613 cases and 1547 controls were analyzed; we found a moderate association for the recessive model genotype (OR 2.04, CI 95 % 1.53–2.72; p = 0.342; Z = 4.83; I 2 = 11.3). This study supports a positive association between the MTHFR-C677T polymorphism and genetically confirmed Mexican mestizo CCAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Putaala J, Metso AJ, Metso TM et al (2009) Analysis of 1008 consecutive patients aged 15–49 with first-ever ischemic stroke: the Helsinki young stroke registry. Stroke 40:1195–1203

    Article  PubMed  Google Scholar 

  2. Debette S, Leys D (2009) Cervical-artery dissections: predisposing factors, diagnosis, and outcome. Lancet Neurol 8:668–678

    Article  PubMed  Google Scholar 

  3. Schievink WI (2001) Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med 344:898–906

    Article  CAS  PubMed  Google Scholar 

  4. Barinagarrementeria F, Figueroa T, Huebe J et al (1996) Cerebral infarction in people under 40 years: etiologic analysis of 300 cases prospectively evaluated. Cerebrovasc Dis 6:75–79

    Article  Google Scholar 

  5. Germain DP (2007) Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis 2:32

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rodrigues VJ, Elsayed S, Loeys BL et al (2009) Neuroradiologic manifestations of Loeys-Dietz syndrome type 1. Am J Neuroradiol 30:1614–1619

    Article  CAS  PubMed  Google Scholar 

  7. Brandt T, Orberk E, Weber R et al (2001) Pathogenesis of cervical artery dissections: association with connective tissue abnormalities. Neurology 57:24–30

    Article  CAS  PubMed  Google Scholar 

  8. Debette S, Markus HS (2009) The genetics of cervical artery dissection: a systematic review. Stroke 40:e459–e466

    Article  CAS  PubMed  Google Scholar 

  9. Wiest T, Hyrenbach S, Bambul P et al (2006) Genetic analysis of familial connective tissue alterations associated with cervical artery dissections suggests locus heterogeneity. Stroke 37:1697–1702

    Article  PubMed  Google Scholar 

  10. Debette S (2014) Pathophysiology and risk factors of cervical artery dissection: what have we learnt from large hospital-based cohorts? Curr Opin Neurol 27:20–28

    Article  PubMed  Google Scholar 

  11. Pezzini A, Drera B, Del Zotto E et al (2011) Mutations in TGFBR2 gene cause spontaneous cervical artery dissection. J Neurol Neurosurg Psychiatry 82:1372–1374

    Article  PubMed  Google Scholar 

  12. Jara-Prado A, Alonso ME, Martinez Ruano L et al (2010) MTHFR C677T, FII G20210A, FV Leiden G1691A, NOS3 intron 4 VNTR, and APOE epsilon4 gene polymorphisms are not associated with spontaneous cervical artery dissection. Int J Stroke 58:80–85

    Article  Google Scholar 

  13. Arauz A, Hoyos L, Cantu C et al (2007) Mild hyperhomocysteinemia and low folate concentrations as risk factors for cervical arterial dissection. Cerebrovasc Dis 24:210–214

    Article  CAS  PubMed  Google Scholar 

  14. Gaughan DJ, Barbaux S, Kluijtmans LA et al (2000) The human and mouse methylenetetrahydrofolate reductase (MTHFR) genes: genomic organization, mRNA structure and linkage to the CLCN6 gene. Gene 257:279–289

    Article  CAS  PubMed  Google Scholar 

  15. Pezzini A, Del Zotto E, Archetti S et al (2002) Plasma homocysteine concentration, C677T MTHFR genotype, and 844ins68 bp CBS genotype in young adults with spontaneous cervical artery dissection and atherothrombotic stroke. Stroke 33:664–669

    Article  CAS  PubMed  Google Scholar 

  16. Chobanian AV, Bakris GL, Black HR et al (2003) Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42:1206–1252

    Article  CAS  PubMed  Google Scholar 

  17. Lepor NE, Vogel RE (2001) National Cholesterol Education Program Adult Treatment Panel III. Summary of the third report of the National Cholesterol Education Program Adult Treatment Panel III. Rev Cardiovasc Med 2:160–165

    CAS  PubMed  Google Scholar 

  18. Gil-Velázquez LE, Sil-Acosta MJ, Domínguez-Sánchez ER et al (2013) Practice guideline. Diagnosis and treatment of type 2 diabetes mellitus. Rev Med Inst Mex Seguro Soc 51:104–119

    PubMed  Google Scholar 

  19. Bamford J, Sandercock P, Dennis M et al (1991) Classification and natural history of clinically subtypes of cerebral infarction. Lancet 337:1521–1526

    Article  CAS  PubMed  Google Scholar 

  20. Vertinsky AT, Schwartz NE, Fischbein NJ et al (2008) Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. Am J Neuroradiol 29:1753–1760

    Article  CAS  PubMed  Google Scholar 

  21. Rodallec MH, Marteau V, Gerber S et al (2008) Craniocervical arterial dissection: spectrum of imaging findings and differential diagnosis. Radiographics 28:1711–1728

    Article  PubMed  Google Scholar 

  22. Debette S, Grond-Ginsbach C, Bodenant M et al (2011) Differential features of carotid and vertebral artery dissections. The CCADISP study. Neurology 77:1174–1181

    Article  CAS  PubMed  Google Scholar 

  23. Thomas LC, Rivett DA, Parsons M et al (2014) Risk factors, radiological features, and infarct topography of craniocervical arterial dissection. Int J Stroke 9:1073–1082

    Article  PubMed  Google Scholar 

  24. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villalobos-Comparán M, Teresa Flores-Dorantes M, Teresa Villarreal-Molina M et al (2008) The FTO gene is associated with adulthood obesity in the Mexican population. Obesity (Silver Spring) 16:2296–2301

    Article  Google Scholar 

  26. Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  27. Luo H, Liu B, Hu J et al (2014) Hyperhomocysteinemia and methylenetetrahydrofolate reductase polymorphism in cervical artery dissection: a meta-analysis. Cerebrovasc Dis 37:313–322

    Article  CAS  PubMed  Google Scholar 

  28. Gallai V, Caso V, Paciaroni M et al (2001) Mild hyperhomocyst(e)inemia: a possible risk factor for cervical artery dissection. Stroke 32:714–718

    Article  CAS  PubMed  Google Scholar 

  29. Konrad C, Muller GA, Langer C et al (2004) Plasma homocysteine, MTHFR C677T, CBS 844ins68 bp, and MTHFD1 G1958A polymorphisms in spontaneous cervical artery dissections. J Neurol 251:1242–1248

    Article  CAS  PubMed  Google Scholar 

  30. Kloss M, Wiest T, Hyrenbach S et al (2006) MTHFR 677TT genotype increases the risk for cervical artery dissections. J Neurol Neurosurg Psychiatry 77:951–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pezzini A, Grassi M, Del Zotto E et al (2007) Migraine mediates the influence of C677T MTHFR genotypes on ischemic stroke risk with a stroke-subtype effect. Stroke 38:3145–3151

    Article  CAS  PubMed  Google Scholar 

  32. Longoni M, Grond-Ginsbach C, Grau AJ et al (2006) The ICAM-1 E469K gene polymorphism is a risk factor for spontaneous cervical artery dissection. Neurology 66:1273–1275

    Article  CAS  PubMed  Google Scholar 

  33. von Pein F, Valkkila M, Schwarz R et al (2002) Analysis of the COL3A1 gene in patients with spontaneous cervical artery dissections. J Neurol 249:862–866

    Article  Google Scholar 

  34. Martin JJ, Hausser I, Lyrer P et al (2006) Familial cervical artery dissections: clinical, morphologic, and genetic studies. Stroke 37:2924–2929

    Article  PubMed  Google Scholar 

  35. Kuivaniemi H, Prockop DJ, Wu Y et al (1993) Exclusion of mutations in the gene for type III collagen (COL3A1) as a common cause of intracranial aneurysms or cervical artery dissections: results from sequence analysis of the coding sequences of type III collagen from 55 unrelated patients. Neurology 43:2652–2658

    Article  CAS  PubMed  Google Scholar 

  36. Debette S, Kamatani Y, Metso TM et al (2015) Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet 47:78–83

    Article  CAS  PubMed  Google Scholar 

  37. Graham IM, Daly LE, Refsum HM et al (1997) Plasma homocysteine as a risk factor for vascular disease: the European Concerted Action Project. JAMA 277:1775–1781

    Article  CAS  PubMed  Google Scholar 

  38. Dayal S, Wilson KM, Leo L et al (2006) Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood 108:2237–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lentz SR (1997) Homocysteine and vascular dysfunction. Life Sci 61:1205–1215

    Article  CAS  PubMed  Google Scholar 

  40. Fassbender K, Mielke O, Bertsch T et al (1999) Homocysteine in cerebral macroangiography and microangiopathy. Lancet 353:1586–1587

    Article  CAS  PubMed  Google Scholar 

  41. Charpiot P, Bescond A, Augier T et al (1998) Hyperhomocysteinemia induces elastolysis in minipig arteries: structural consequences, arterial site specificity and effect of captoprilhydrochlorothiazide. Matrix Biol 17:559–574

    Article  CAS  PubMed  Google Scholar 

  42. Rahmani DJ, Rolland PH, Rosset E et al (1997) Homocysteine induces synthesis of a serine elastase in arterial smooth muscle cells from multi-organ donors. Cardiovasc Res 34:597–602

    Article  Google Scholar 

  43. Brandt T, Hausser I, Orberk E et al (1998) Ultrastructural connective tissue abnormalities in patients with spontaneous cervicocerebral artery dissections. Ann Neurol 44:281–285

    Article  CAS  PubMed  Google Scholar 

  44. Tian C, Gregersen PK, Seldin MF (2008) Accounting for ancestry: population substructure and genome-wide association studies. Hum Mol Genet 17:R143–R150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Barboza.

Ethics declarations

Conflicts of interest

Dr. Ruiz-Franco reported no conflict of interest disclosure. Dr. Barboza reported no conflict of interest disclosure. Dr. Jara-Prado reported no conflict of interest disclosure. Dr. Canizales-Quinteros reported no conflict of interest disclosure. Dr. Leon-Mimila reported no conflict of interest disclosure. Dr. Arguelles-Morales reported no conflict of interest disclosure. Dr. Vargas-González reported no conflict of interest disclosure. Dr. Quiroz-Compean reported no conflict of interest disclosure. Dr. Arauz had served as a research adviser for Boehringer-Ingelheim and Pfizer.

Funding/support

This research was partially supported by the Centro Nacional de Ciencia y Tecnología (CONACYT) FONSEC 181359 Educational Grant in México.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Franco, A., Barboza, M.A., Jara-Prado, A. et al. TGFBR2 mutation and MTHFR-C677T polymorphism in a Mexican mestizo population with cervico-cerebral artery dissection. J Neurol 263, 1066–1073 (2016). https://doi.org/10.1007/s00415-016-8101-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8101-8

Keywords

Navigation