Skip to main content

Advertisement

Log in

Cerebral metabolic correlates of four dementia scales in Alzheimer’s disease

  • ERRATUM
  • Published:
Journal of Neurology Aims and scope Submit manuscript

The Original Article was published on 23 February 2005

Abstract

Different scales can be used to evaluate dementia severity in Alzheimer’s disease (AD). They do assess different cognitive or functional abilities, but their global scores are frequently in mutual correlation. Functional imaging provides an objective method for the staging of dementia severity. Positron emission tomography was used to assess the relationship between brain metabolism and four dementia scales that reflect a patient’s global cognitive abilities (mini mental state), caregiver’s evaluation of cognitive impairment (newly designed scale), daily living functioning (instrumental activities of daily living) and global dementia (clinical dementia rating). We wondered whether different clinical dementia scales would be related to severity of metabolic impairment in the same brain regions, and might reflect impairment of common cognitive processes. 225 patients with probable AD were recruited in a prospective multicentre European study. All clinical scales were related to brain metabolism in associative temporal, parietal or frontal areas. A factorial analysis demonstrated that all scales could be classified in a single factor. That factor was highly correlated to decrease of cerebral activity in bilateral parietal and temporal cortices, precuneus, and left middle frontal gyrus. This finding suggests that global scores for all scales provided similar information on the neural substrate of dementia severity. Capitalizing on the neuroimaging literature, dementia severity reflected by reduced metabolism in posterior and frontal associative areas in AD might be related to a decrease of controlled processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welsh KA, Butters N, Hughes JP, Mohs RC, Heyman A (1992) Detection and staging of dementia in Alzheimer’s disease. Use of the neuropsychological measures developed for the Consortium to Establish a Registry for Alzheimer’s Disease. Arch Neurol 49:448–452

    PubMed  Google Scholar 

  2. Morris RG (1994) Recent developments in the neuropsychology of dementia. Int Rev Psychiatry 6:85–107

    Google Scholar 

  3. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–189

    PubMed  Google Scholar 

  4. Rosen W, Mohs R, Davis K (1984) A New Rating Scale for Alzheimer’s disease. Am J Psychiatry 14:1356–1364

    Google Scholar 

  5. Lawton M, Brody E (1969) Assessment of Older People: Self Maintaining and Instrumental Activities of Daily Living. Gerontologist 9:179–186

    PubMed  Google Scholar 

  6. Hughes C, Berg L, Danzinger W (1982) A New Clinical Scale for the Staging of Dementia. Br J Psychiatry 140:566–572

    PubMed  Google Scholar 

  7. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  PubMed  Google Scholar 

  8. Bradley KM, O’Sullivan VT, Soper ND, Nagi Z, King EM, Smith AD, Shepstone BJ (2002) Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease. Brain 125:1772–1781

    Article  PubMed  Google Scholar 

  9. Frackowiak RSJ, Pozzili C, Legg NJ, Du Boulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilisation in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778

    PubMed  Google Scholar 

  10. Herholz K, Nordberg A, Salmon E, Perani D, Kessler J, Mielke R, Halber M, Jelic V, Almkvist O, Collette F, Alberoni M,Kennedy A, Hasselbalch S, Fazio F, Heiss W-D (1999) Impairment of neocortical metabolism predicts progression in Alzheimer’s disease. Dement Geriatr Cogn Disord 10:494–504

    PubMed  Google Scholar 

  11. APA (1994) Diagnostic and statistical manual of mental disorders (4th Ed). American Psychiatric association, Washington, D.C.

  12. Mckhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  Google Scholar 

  13. Cummings JL (1997) Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology 48(Suppl 6):S10–S16

    Google Scholar 

  14. Herholz K, Salmon E, Perani D, Baron JC,Holthoff V, Frölich L, Schönknecht P, Ito K, Mielke R, Kalbe E, Zündorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Beuthien-Baumann B, Menzel C, Schröder J, Kato T, Arahata Y, Henze M, Heiss WD (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuro Image 17:302–316

    PubMed  Google Scholar 

  15. Ashford WJ, Kumar V, Barringer M, Becker M, Bice J, Ryan N, Vic S (1992) Assessing Alzheimer’s disease severity with a global clinical scale. Int Psychogeriatr 4(1):55–74

    Article  Google Scholar 

  16. Fazio F, Perani D, Gilardi MC, Colombo F, Cappa SF,Vallar G, Bettinardi V, Paulesu E, Alberoni M, Bressi S, et al. (1992) Metabolic impairment in human amnesia: a PET study of memory networks. J Cereb Blood Flow Metab 12:353–358

    PubMed  Google Scholar 

  17. Kuhl DE, Metter EJ, Riege WH (1985) Patterns of cerebral glucose utilisation in depression, multiple infarct dementia, and Alzheimer’s disease. In: Sokoloff L (ed) Pattern of cerebral glucose utilisation in depression, multiple infarcts and Alzheimer’s disease. Raven Press, New York, pp 211–226

  18. Waldemar G, Bruhn P, Kristensen M, Johnsen A, Paulson OB, Lassen NA (1994) Heterogeneity of neocortical cerebral blood flow deficits in dementia of the Alzheimer type: A (99mTc)- d,1-HMPAO SPECT study. J Neurol Neurosurg Psychiatry 57:285–295

    PubMed  Google Scholar 

  19. Haxby JV, Grady CL, Koss E, Horwitz B, Schapiro M, Friedland RP, Rapoport SI (1988) Heterogeneous anterior-posterior metabolic patterns in dementia of Alzheimer type. Neurology 38:1853–1863

    PubMed  Google Scholar 

  20. Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1991) Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging 13:93–98

    Article  Google Scholar 

  21. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94

    Article  PubMed  Google Scholar 

  22. Ichimiya A, Herholz K, Mielke R, Kessler J, Slansky I, Heiss WD (1994) Difference of regional cerebral metabolic pattern between presenile and senile dementia of Alzheimer type: a factor analytic study. J Neurol Sci 123:11–17

    Article  PubMed  Google Scholar 

  23. Salmon E, Collette F, Degueldre C, Lemaire C, Franck G (2000) Voxelbased analysis of confounding effects of age and dementia severity on cerebral metabolism in Alzheimer’s disease. Hum Brain Mapp 10:39–48

    Article  PubMed  Google Scholar 

  24. Kawano M, Ichimiya A, Ogomori K, Kuwabara Y, Sasaki M, Yoshid T, Tashiro N (2001) Relationship between both IQ and Mini-Mental State Examination and the regional cerebral glucose metabolism in clinically diagnosed Alzheimer’s disease: a PET study. Dement Geriatr Cogn Disord 12(2):171–176

    Article  PubMed  Google Scholar 

  25. Derouesne C, Thibault S, Lorezon P, Baudouin-Madec V, Piquard A, Lacomblez L (2002) Perturbation of daily living in Alzheimer’s disease. A study of 172 patients with the using a questionnaire completed by caregivers. Rev Neurol (Paris) 158(6–7):684–700

    PubMed  Google Scholar 

  26. Glosser G, Gallo J, Duda N, de Vries JJ, Clark CM, Grossman M (2002) Visual perceptual functions predict instrumental activities of daily living in patients with dementia. Neuropsychiatry Neuropsychol Behav Neurol 15(3):198–206

    PubMed  Google Scholar 

  27. Hill RD, Backman L, Fraglioni L (1995) Determinants of functional abilities in dementia. J Am Geriatr Soc 43(10):1092–1097

    PubMed  Google Scholar 

  28. Juva K, Sulkava R, Erkinjuntti T, Ylikoski R, Valvanne J, Tilvis R (1994) Staging the severity of dementia: comparison of clinical (CDR, DSM-III-R), functional (ADL, IADL) and cognitive (MMSE) scales. Acta Neurol Scand 90(4):293–298

    PubMed  Google Scholar 

  29. Morris JC, Ernesto C, Schafer K, Coats M, Leon S, Sano M, Thal LJ, Woodbury P (1997) Clinical dementia rating training and reliability in multicenter studies: the Alzheimer’s Disease Cooperative Study experience. Neurology 48(6):1508–1510

    PubMed  Google Scholar 

  30. Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88

    PubMed  Google Scholar 

  31. Ushijima Y, Okuyama C, Mori S, Nakamura T, Kubota T, Nishimur T (2002) Relationship between cognitive function and regional cerebral blood flow in Alzheimer’ disease. Nucl Med Commun 23(8):779–784

    Article  PubMed  Google Scholar 

  32. Kennedy JS, Strauss ME, Smyth KA, Whitehouse PJ (1993) The relationship of clinical psychopathologic rating and cognitive factors to clinical dementia staging. Prog Neuropsychopharmacol Biol Psychiatry 17(5):775–779

    PubMed  Google Scholar 

  33. Laureys S, Antoine S, Boly M, Elincx S, Faymonville ME, Berre J, Sadzot B, Ferring M, De Tiege X, van Bogaert P, Hansen I, Damas P, Mavroudakis N, Lambermont B, Del Fiore G, Aerts J, Degueldre C, Phillips C, Franck G, Vincent JL, Lamy M, Luxen A, Moonen G, Goldman S, Maquet P (2002) Brain function in vegetative state. Acta Neurol Belg 102:177–185

    PubMed  Google Scholar 

  34. Jorm AF (1986) Controlled and automatic information processing in senile dementia: a review. Psychol Med 16(1):77–88

    PubMed  Google Scholar 

  35. Fabrigoule C, Rouch I, Taberly A, Letenneur L, Commenges D, Mazaux JM, Orgogozo JM, Dartigues JF (1998) Cognitive processes in preclinical phase of dementia. Brain 121(pt1):135–141

    Article  PubMed  Google Scholar 

  36. Salthouse TA, Becker JT (1998) Independent effects of Alzheimer’s disease on neuropsychological functioning. Neuropsychology 12(2):242–252

    Article  PubMed  Google Scholar 

  37. Amieva H, Rouch-Leroyer I, Fabrigoule C, Dartigues JF (2000) Deterioration of controlled process in the preclinical phase dementia: a confirmatory analysis. Dement Geriatr Cogn Disord 11(1):46–52

    Article  PubMed  Google Scholar 

  38. Andel R, Gatz M, Pedersen NL, Reynolds CA, Johansson B, Berg S (2001) Deficit in controlled processing may predict dementia: a twin study. J Gerontol B Psychol Sci Soc Sci 56(6):347–355

    Google Scholar 

  39. Knight RG (1998) Controlled and automatic memory process in Alzheimer’s disease. Cortex 34(3):427–435

    PubMed  Google Scholar 

  40. Foldi NS, Lobosco JJ, Schaefer LA (2002) The effect of attentional dysfunction in Alzheimer’s disease: theorical and practical implications. Semin Speech Lang 23(2):139–150

    PubMed  Google Scholar 

  41. Perry RJ, Watson P, Hodges JR (2000) The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: relationship to episodic and semantic memory impairment. Neuropsychologia 38(3):252–271

    Article  PubMed  Google Scholar 

  42. Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK (2001) Attentional control in Alzheimer’s disease. Brain 124(pt 8):1492–1508

    Article  PubMed  Google Scholar 

  43. Ojeda N, Ortuno F, Lopez P, Arbizu J, Marti-Climent J, Cervera-Enguix S (2002) Neuroanatomical bases of attention by means of PETH2150: the role of the prefrontal and parietal cortex in controlled processes. Rev Neurol (Paris) 16:35(6):501–507

    Google Scholar 

  44. Corbetta M, Miezin F, Schulman G, Petersen S (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226

    PubMed  Google Scholar 

  45. Mesulam MM (1990) Large-scale cognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613

    Article  PubMed  Google Scholar 

  46. Posner MI, Rothbart MK (1998) Attention, self-regulation and consciousness. Philos Trans R Soc Lond B Biol Sci 353:1915–1927

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Salmon*.

Additional information

Affiliation of D. Perani and D. Anchisi has been incompletely published. The original article can be found online at http://dx.doi.org/10.1007/s00415-005-0551-3

The publisher apologises for any inconvenience caused by this mistake.

*Both authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmon*, E., Lespagnard*, S., Marique, P. et al. Cerebral metabolic correlates of four dementia scales in Alzheimer’s disease. J Neurol 252, 1138 (2005). https://doi.org/10.1007/s00415-005-0961-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-005-0961-2

Key words

Navigation