Skip to main content
Log in

Assessment of ForenSeq mtDNA Whole Genome Kit for forensic application

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) is an indispensable genetic marker in forensic genetics. The emergence and development of massively parallel sequencing (MPS) makes it possible to obtain complete mitochondrial genome sequences more quickly and accurately. The study evaluated the advantages and limitations of the ForenSeq mtDNA Whole Genome Kit in the practical application of forensic genetics by detecting human genomic DNA standards and thirty-three case samples. We used control DNA with different amount to determine sensitivity of the assay. Even when the input DNA is as low as 2.5 pg, most of the mitochondrial genome sequences could still be covered. For the detection of buccal swabs and aged case samples (bloodstains, bones, teeth), most samples could achieve complete coverage of mitochondrial genome. However, when ancient samples and hair samples without hair follicles were sequenced by the kit, it failed to obtain sequence information. In general, the ForenSeq mtDNA Whole Genome Kit has certain applicability to forensic low template and degradation samples, and these results provide the data basis for subsequent forensic applications of the assay. The overall detection process and subsequent analysis are easy to standardize, and it has certain application potential in forensic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data generated or analyzed during this study are included in the results of this article.

References

  1. Bus MM, Karas O, Allen M (2016) Multiplex pyrosequencing of InDel markers for forensic DNA analysis. Electrophoresis 37:3039–3045. https://doi.org/10.1002/elps.201600255

    Article  CAS  PubMed  Google Scholar 

  2. Butler J (2014) Advanced topics in forensic dna typing: interpretation. Elsevier, San Diego, CA, pp 47–86

  3. Kader F, Ghai M (2015) DNA methylation and application in forensic sciences. Forensic Sci Int 249:255–265. https://doi.org/10.1016/j.forsciint.2015.01.037

    Article  CAS  PubMed  Google Scholar 

  4. Kidd KK, Pakstis AJ, Speed WC, Grigorenko EL, Kajuna SL, Karoma NJ, Kungulilo S, Kim JJ, Lu RB, Odunsi A, Okonofua F, Parnas J, Schulz LO, Zhukova OV, Kidd JR (2006) Developing a SNP panel for forensic identification of individuals. Forensic Sci Int 164:20–32. https://doi.org/10.1016/j.forsciint.2005.11.017

    Article  CAS  PubMed  Google Scholar 

  5. Syndercombe CD (2021) Mitochondrial DNA in forensic use. Emerg Top Life Sci 5:415–426. https://doi.org/10.1042/ETLS20210204

    Article  Google Scholar 

  6. Zeng X, King JL, Stoljarova M, Warshauer DH, LaRue BL, Sajantila A, Patel J, Storts DR, Budowle B (2015) High sensitivity multiplex short tandem repeat loci analyses with massively parallel sequencing. Forensic Sci Int-Gen 16:38–47. https://doi.org/10.1016/j.fsigen.2014.11.022

    Article  CAS  Google Scholar 

  7. Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genom Hum G 4:119–141. https://doi.org/10.1146/annurev.genom.4.070802.110352

    Article  CAS  Google Scholar 

  8. Budowle B, Bieber FR, Eisenberg AJ (2005) Forensic aspects of mass disasters: strategic considerations for DNA-based human identification. Legal Med-Tokyo 7:230–243. https://doi.org/10.1016/j.legalmed.2005.01.001

    Article  CAS  Google Scholar 

  9. Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513. https://doi.org/10.1002/jcp.1041360316

    Article  CAS  PubMed  Google Scholar 

  10. Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Csh Perspect Biol 5:a21220. https://doi.org/10.1101/cshperspect.a021220

    Article  CAS  Google Scholar 

  11. Fattorini P, Previderè C, Bonin S, Sorçaburu CS, Grignani P, Pitacco P, Concato M, Bertoglio B, Zupanič PI (2023) The Baron Pasquale Revoltella’s will in the forensic genetics era. Genes-Basel 14. https://doi.org/10.3390/genes14040851

  12. Zavala EI, Thomas JT, Sturk-Andreaggi K, Daniels-Higginbotham J, Meyers KK, Barrit-Ross S, Aximu-Petri A, Richter J, Nickel B, Berg GE, McMahon TP, Meyer M, Marshall C (2022) Ancient DNA methods improve forensic DNA profiling of Korean War and World War II unknowns. Genes-Basel 13. https://doi.org/10.3390/genes13010129

  13. Brandhagen MD, Loreille O, Irwin JA (2018) Fragmented nuclear DNA is the predominant genetic material in human hair shafts. Genes-Basel 9. https://doi.org/10.3390/genes9120640

  14. Loreille O, Tillmar A, Brandhagen MD, Otterstatter L, Irwin JA (2022) Improved DNA extraction and illumina sequencing of DNA recovered from aged rootless hair shafts found in relics associated with the Romanov family. Genes-Basel 13. https://doi.org/10.3390/genes13020202

  15. Eduardoff M, Xavier C, Strobl C, Casas-Vargas A, Parson W (2017) Optimized mtDNA control region primer extension capture analysis for forensically relevant samples and highly compromised mtDNA of different age and origin. Genes-Basel 8. https://doi.org/10.3390/genes8100237

  16. Emery MV, Bolhofner K, Ghafoor S, Winingear S, Buikstra JE, Fulginiti LC, Stone AC (2022) Whole mitochondrial genomes assembled from thermally altered forensic bones and teeth. Forensic Sci Int-Gen 56:102610. https://doi.org/10.1016/j.fsigen.2021.102610

    Article  CAS  Google Scholar 

  17. Pilli E, Palamenghi A, Morelli S, Mazzarelli D, De Angelis D, Jantz RL, Cattaneo C (2023) How physical and molecular anthropology interplay in the creation of biological profiles of unidentified migrants. Genes-Basel 14. https://doi.org/10.3390/genes14030706

  18. Vullo CM, Catelli L, Ibarra RA, Papaioannou A, Merino J, Lopez-Parra AM, Gaviria A, Baeza-Richer C, Romanini C, González-Moya E, Casals F, Calafell F, Berardi G, Iannacone GC, Vicuña GG, Zorba GK, Boschi I, Olarte JV, Ruiz GJ, Acierno JP, Soto ML, Miranda MV, García KM, Marrucci MA, Porto MJ, Piñero MH, Aler M, Stephenson OM, Navarrete SC, Toscanini U, Saragoni VG, Bozzo W, Posada PY, Bajunovic Z, Solla LP, Parsons T (2021) Second GHEP-ISFG exercise for DVI: “DNA-led” victims’ identification in a simulated air crash. Forensic Sci Int-Gen 53:102527. https://doi.org/10.1016/j.fsigen.2021.102527

    Article  CAS  Google Scholar 

  19. Dos SS, de Oliveira J, de Queiroga ND, Montenegro Y, Leistner-Segal S, Brusius-Facchin AC, Eufrazino GC, Giugliani R, de Medeiros P (2021) Demographic, clinical, and ancestry characterization of a large cluster of mucopolysaccharidosis IV A in the Brazilian Northeast region. Am J Med Genet A 185:2929–2940. https://doi.org/10.1002/ajmg.a.62375

    Article  CAS  Google Scholar 

  20. Wang CC, Posth C, Furtwangler A, Sumegi K, Banfai Z, Kasler M, Krause J, Melegh B (2021) Genome-wide autosomal, mtDNA, and Y chromosome analysis of King Bela III of the Hungarian Arpad dynasty. Sci Rep-Uk 11:19210. https://doi.org/10.1038/s41598-021-98796-x

    Article  CAS  Google Scholar 

  21. Berger C, Parson W (2009) Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples. Forensic Sci Int-Gen 3:149–153. https://doi.org/10.1016/j.fsigen.2009.01.011

    Article  CAS  Google Scholar 

  22. Just RS, Scheible MK, Fast SA, Sturk-Andreaggi K, Rock AW, Bush JM, Higginbotham JL, Peck MA, Ring JD, Huber GE, Xavier C, Strobl C, Lyons EA, Diegoli TM, Bodner M, Fendt L, Kralj P, Nagl S, Niederwieser D, Zimmermann B, Parson W, Irwin JA (2015) Full mtGenome reference data: development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. Forensic Sci Int-Gen 14:141–155. https://doi.org/10.1016/j.fsigen.2014.09.021

    Article  CAS  Google Scholar 

  23. Rohlin A, Wernersson J, Engwall Y, Wiklund L, Bjork J, Nordling M (2009) Parallel sequencing used in detection of mosaic mutations: comparison with four diagnostic DNA screening techniques. Hum Mutat 30:1012–1020. https://doi.org/10.1002/humu.20980

    Article  CAS  PubMed  Google Scholar 

  24. Akita Y, Koga Y, Iwanaga R, Wada N, Tsubone J, Fukuda S, Nakamura Y, Kato H (2000) Fatal hypertrophic cardiomyopathy associated with an A8296G mutation in the mitochondrial tRNA(Lys) gene. Hum Mutat 15:382. https://doi.org/10.1002/(SICI)1098-1004(200004)15:4%3c382::AID-HUMU15%3e3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  25. Liang MH, Johnson DR, Wong LJ (1998) Preparation and validation of PCR-generated positive controls for diagnostic dot blotting. Clin Chem 44:1578–1579

    Article  CAS  PubMed  Google Scholar 

  26. Bai RK, Wong LJ (2004) Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 50:996–1001. https://doi.org/10.1373/clinchem.2004.031153

    Article  CAS  PubMed  Google Scholar 

  27. Rong E, Wang H, Hao S, Fu Y, Ma Y, Wang T (2018) Heteroplasmy detection of mitochondrial DNA A3243G mutation using quantitative real-time PCR assay based on TaqMan-MGB probes. Biomed Res Int 2018:1286480. https://doi.org/10.1155/2018/1286480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465:82–85. https://doi.org/10.1038/nature08958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schlieben LD, Prokisch H (2023) Genetics of mitochondrial diseases: current approaches for the molecular diagnosis. Handb Clin Neurol 194:141–165. https://doi.org/10.1016/B978-0-12-821751-1.00011-7

    Article  PubMed  Google Scholar 

  30. Yang Z, Slone J, Huang T (2022) Next-generation sequencing to characterize mitochondrial genomic DNA heteroplasmy. Curr Protoc 2:e412. https://doi.org/10.1002/cpz1.412

    Article  CAS  PubMed  Google Scholar 

  31. Chen C, Li Y, Tao R, Jin X, Guo Y, Cui W, Chen A, Yang Y, Zhang X, Zhang J, Li C, Zhu B (2020) The genetic structure of Chinese Hui ethnic group revealed by complete mitochondrial genome analyses using massively parallel sequencing. Genes-Basel 11. https://doi.org/10.3390/genes11111352

  32. Peng D, Geng J, Yang J, Liu J, Wang N, Wu R, Sun H (2023) Whole mitochondrial genome detection and analysis of two- to four-generation maternal pedigrees using a new massively parallel sequencing panel. Genes-Basel 14. https://doi.org/10.3390/genes14040912

  33. Shukla P, Mukherjee S, Patil A, Joshi B (2023) Molecular characterization of variants in mitochondrial DNA encoded genes using next generation sequencing analysis and mitochondrial dysfunction in women with PCOS. Gene 855:147126. https://doi.org/10.1016/j.gene.2022.147126

    Article  CAS  PubMed  Google Scholar 

  34. Guo Y, Li CI, Sheng Q, Winther JF, Cai Q, Boice JD, Shyr Y (2013) Very low-level heteroplasmy mtDNA variations are inherited in humans. J Genet Genomics 40:607–615. https://doi.org/10.1016/j.jgg.2013.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ta M, Nguyen NN, Tran DM, Nguyen TH, Vu TA, Le DT, Le PT, Do T, Hoang H, Chu HH (2021) Massively parallel sequencing of human skeletal remains in Vietnam using the precision ID mtDNA control region panel on the Ion S5 system. Int J Legal Med 135:2285–2294. https://doi.org/10.1007/s00414-021-02649-1

    Article  PubMed  Google Scholar 

  36. Brandhagen MD, Just RS, Irwin JA (2020) Validation of NGS for mitochondrial DNA casework at the FBI Laboratory. Forensic Sci Int-Gen 44:102151. https://doi.org/10.1016/j.fsigen.2019.102151

    Article  CAS  Google Scholar 

  37. Gutierrez R, Roman MG, Harrel M, Hughes S, LaRue B, Houston R (2022) Assessment of the ForenSeq mtDNA control region kit and comparison of orthogonal technologies. Forensic Sci Int-Gen 59:102721. https://doi.org/10.1016/j.fsigen.2022.102721

    Article  CAS  Google Scholar 

  38. Woerner AE, Ambers A, Wendt FR, King JL, Moura-Neto RS, Silva R, Budowle B (2018) Evaluation of the precision ID mtDNA whole genome panel on two massively parallel sequencing systems. Forensic Sci Int-Gen 36:213–224. https://doi.org/10.1016/j.fsigen.2018.07.015

    Article  CAS  Google Scholar 

  39. Holt CL, Stephens KM, Walichiewicz P, Fleming KD, Forouzmand E, Wu SF (2021) Human mitochondrial control region and mtGenome: design and forensic validation of NGS multiplexes, sequencing and analytical software. Genes-Basel 12. https://doi.org/10.3390/genes12040599

  40. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147. https://doi.org/10.1038/13779

    Article  CAS  PubMed  Google Scholar 

  41. Pereira V, Kampmann M, Børsting C (2022) Evaluation of the ForenSeq mtDNA Whole Genome Kit for massively parallel sequencing of mitochondrial genomes. Forensic Sci Int Genet Suppl Ser 8:288–290. https://doi.org/10.1016/j.fsigss.2022.10.065

    Article  Google Scholar 

  42. Riman S, Kiesler KM, Borsuk LA, Vallone PM (2017) Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing. Forensic Sci Int-Gen 29:181–192. https://doi.org/10.1016/j.fsigen.2017.04.005

    Article  CAS  Google Scholar 

  43. Xin Y, Jia R, Zhang S, Guo F (2022) Mitochondrial genome sequencing with short overlapping amplicons on MiSeq FGx system. Foren Sci Res 7:142–153. https://doi.org/10.1080/20961790.2021.1963514

    Article  Google Scholar 

  44. Elaine J, Lewis OBMV (2022) Nuclear DNA SNP profiles derived from human hair shaft. Forensic Sci Int Genet Suppl Ser 8:333–335

    Article  Google Scholar 

  45. Muller K, Klein R, Miltner E, Wiegand P (2007) Improved STR typing of telogen hair root and hair shaft DNA. Electrophoresis 28:2835–2842. https://doi.org/10.1002/elps.200600669

    Article  CAS  PubMed  Google Scholar 

  46. Dash HR, Das S (2018) Microbial degradation of forensic samples of biological origin: potential threat to human DNA typing. Mol Biotechnol 60:141–153. https://doi.org/10.1007/s12033-017-0052-5

    Article  CAS  PubMed  Google Scholar 

  47. Pereira V, Longobardi A, Borsting C (2018) Sequencing of mitochondrial genomes using the precision ID mtDNA whole genome panel. Electrophoresis 39:2766–2775. https://doi.org/10.1002/elps.201800088

    Article  CAS  PubMed  Google Scholar 

  48. Cuenca D, Battaglia J, Halsing M, Sheehan S (2020) Mitochondrial sequencing of missing persons DNA casework by implementing thermo Fisher’s Precision ID mtDNA Whole Genome Assay. Genes-Basel 11. https://doi.org/10.3390/genes11111303

  49. Strobl C, Churchill CJ, Lagace R, Wootton S, Roth C, Huber N, Schnaller L, Zimmermann B, Huber G, Lay HS, Moura-Neto R, Silva R, Alshamali F, Souto L, Anslinger K, Egyed B, Jankova-Ajanovska R, Casas-Vargas A, Usaquen W, Silva D, Barletta-Carrillo C, Tineo DH, Vullo C, Wurzner R, Xavier C, Gusmao L, Niederstatter H, Bodner M, Budowle B, Parson W (2019) Evaluation of mitogenome sequence concordance, heteroplasmy detection, and haplogrouping in a worldwide lineage study using the precision ID mtDNA whole genome panel. Forensic Sci Int-Gen 42:244–251. https://doi.org/10.1016/j.fsigen.2019.07.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the participants who volunteered for this study.

Funding

This work was supported by the National Natural Science Foundation of China (No. 82271929), the Chengdu Science and Technology Program (No. 2022-YF05-02026-SN), and China Postdoctoral Science Foundation (No. 2022M722246).

Author information

Authors and Affiliations

Authors

Contributions

Guihong Liu and Yazi Zheng: conceptualization, project administration, data curation, methodology, formal analysis, visualization, writing—original draft, and writing—review and editing.

Qiushuo Wu: validation, methodology, visualization, and formal analysis.

Tao Feng and Yu Xia: validation, resources, and investigation.

Dan Chen, Li Ren, Xiaogang Bai, and Qingqing Li: data curation, methodology, and resources.

Dezhi Chen, Meili Lv, and Miao Liao: visualization, validation, and formal analysis.

Weibo Liang, Lin Zhang, and Shengqiu Qu: funding acquisition, project administration, and supervision.

Corresponding authors

Correspondence to Lin Zhang or Shengqiu Qu.

Ethics declarations

Ethics approval

The research protocol was reviewed and approved by the Ethics Committee at the Institute of Forensic Medicine, Sichuan University (approval reference number: KS2022770).

Consent to participate

Informed consent was obtained from all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zheng, Y., Wu, Q. et al. Assessment of ForenSeq mtDNA Whole Genome Kit for forensic application. Int J Legal Med 137, 1693–1703 (2023). https://doi.org/10.1007/s00414-023-03084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03084-0

Keywords

Navigation