Skip to main content

Advertisement

Log in

A probabilistic model for murder weapon identification using stab-marks in human ribs

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The aim of this article is to provide a scientific and statistical basis to identify the murder weapon in stabbing cases from the geometric characteristics of the stab-marks left on human ribs. For this purpose, a quantitative predictive model is developed, based on geometric measurements of the stab-mark and its location along the rib. A general method based on Bayesian inference and probabilities is used for the model development, rather than a deterministic model given its inability in certain occasions to identify the murder weapon. Following the process explained in this article to collect the stab-mark information required, the complete probabilistic model exposed attained a high accuracy in the identification of the murder weapon between two macroscopically identical blades with a microscopic alteration in one of them (more than 90% of correct identification is achieved).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Yes (see https://upcommons.upc.edu/under the name of the article).

Abbreviations

BMI:

Body mass index

GEV:

Generalized extreme values [distribution]

PC(s):

Principal component(s)

PCA:

Principal component analysis

PDF(s):

Probability density function(s)

PMHS:

Post-mortem human subject

References

  1. UNODC (2019) Global study on homicide 2019. Vienna, Austria

  2. Nolan G, Hainsworth SV, Rutty GN (2018) Forces generated in stabbing attacks: an evaluation of the utility of the mild, moderate and severe scale. Int J Legal Med 132(1):229–236

    Article  PubMed  Google Scholar 

  3. Komo L, Grassberger M (2018) Experimental sharp force injuries to ribs: multimodal morphological and geometric morphometric analyses using micro-CT, macro photography and SEM. Forensic Sci Int 288:189–200

    Article  PubMed  Google Scholar 

  4. Karlsson T (1998) Homicidal and suicidal sharp force fatalities in Stockholm, Sweden: orientation of entrance wounds in stabs gives information in the classification. Forensic Sci Int 93(1):21–32

    Article  CAS  PubMed  Google Scholar 

  5. Kristoffersen S, Normann SA, Morild I, Lilleng PK, Heltne JK (1998) The hazard of sharp force injuries: factors influencing outcome. J Forensic Leg Med 37:71–77

    Article  Google Scholar 

  6. Chadwick EKJ, Nicol AC, Lane JV, Gray TGF (1999) Biomechanics of knife stab attacks. Forensic Sci Int 105(1):35–44

    Article  CAS  PubMed  Google Scholar 

  7. Ferllini R (2012) Macroscopic and microscopic analysis of knife stab wounds on fleshed and clothed ribs. J Forensic Sci 57(3):683–690

    Article  PubMed  Google Scholar 

  8. O’Callaghan PT, Jones MD, James DS, Leadbeatter S, Holt CA, Nokes LDM (1999) Dynamics of stab wounds: force required for penetration of various cadaveric human tissues. Forensic Sci Int 104(2–3):173–178

    Article  PubMed  Google Scholar 

  9. Gilchrist MD, Keenan S, Curtis M, Cassidy M, Byrne G, Destrade M (2008) Measuring knife stab penetration into skin simulant using a novel biaxial tension device. Forensic Sci Int 177(1):52–65

    Article  CAS  PubMed  Google Scholar 

  10. Jones S, Nokes L, Leadbeatter S (1994) The mechanics of stab wounding. Forensic Sci Int 67(1):59–63

    Article  CAS  PubMed  Google Scholar 

  11. Parmar K, Hainsworth SV, Rutty GN (2012) Quantification of forces required for stabbing with screwdrivers and other blunter instruments. Int J Legal Med 126(1):43–53

    Article  PubMed  Google Scholar 

  12. Bolliger SA, Kneubuehl BP, Thali MJ, Eggert S, Siegenthaler L (2016) Stabbing energy and force required for pocket-knives to pierce ribs. Forensic Sci Med Pathol 12(4):394–398

    Article  PubMed  Google Scholar 

  13. Annaidh AN, Cassidy M, Curtis M, Destrade M, Gilchrist MD (2013) A combined experimental and numerical study of stab-penetration forces. Forensic Sci Int 233(1–3):7–13

    Article  PubMed  Google Scholar 

  14. Humphrey C, Kumaratilake J, Henneberg M (2016) A stab in the dark: design and construction of a novel device for conducting incised knife trauma investigations and its initial test. Forensic Sci Int 262:276–281

    Article  PubMed  Google Scholar 

  15. Hainsworth SV, Delaney RJ, Rutty GN (2008) How sharp is sharp? Towards quantification of the sharpness and penetration ability of kitchen knives used in stabbings. Int J Legal Med 122(4):281–291

    Article  CAS  PubMed  Google Scholar 

  16. Thompson TJU, Inglis J (2009) Differentiation of serrated and non-serrated blades from stab-marks in bone. Int J Legal Med 123(2):129–135

    Article  CAS  PubMed  Google Scholar 

  17. Bartelink EJ, Wiersema JM, Demaree RS (2001) Quantitative analysis of sharp force trauma: an application of scanning electron microscopy in forensic anthropology. J Forensic Sci 46(6):1288–1293

    Article  CAS  PubMed  Google Scholar 

  18. Hart R, Rao VJ (1983) Tool mark determination in cartilage of stabbing victim. J Forensic Sci 28(3):794–799

    PubMed  Google Scholar 

  19. Sánchez-Molina D, Martínez-González E, Velázquez-Ameijide J, Llumà J, Soria MR, Arregui-Dalmases C (2015) A stochastic model for soft tissue failure using acoustic emission data. J Mech Behav Biomed Mater 51:328–336

    Article  PubMed  Google Scholar 

  20. García-Vilana S, Sánchez-Molina D, Velázquez-Ameijide J, Llumà J (2021) Injury metrics for assessing the risk of acute subdural hematoma in traumatic events. Int J Environ Res Public Health 18(24):13296

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sánchez-Molina D, García-Vilana S, Velázquez-Ameijide J, Arregui-Dalmases C (2020) Probabilistic assessment for clavicle fracture under compression loading: rate-dependent behavior. Biomed Eng Appl Basis Commun 32(5):2050040

    Article  Google Scholar 

  22. Crowder CH, Rainwater CHW, Fridie JS (2013) Microscopic analysis of sharp force trauma in bone and cartilage: a validation study. J Forensic Sci 58(5):1119–1126

    Article  PubMed  Google Scholar 

  23. Sironi E, Pinchi V, Taroni F (2016) Probabilistic age classification with Bayesian networks: a study on the ossification status of the medial clavicular epiphysis. Forensic Sci Int 258:81–87

    Article  PubMed  Google Scholar 

  24. Timmer ST (2017) Designing and understanding forensic Bayesian networks using argumentation, (doctoral dissertation). Utrecht University

  25. García-Vilana S, Sánchez-Molina D, Llumà J, Velázquez-Ameijide J, Arregui-Dalmases C (2022) A new technique for curved rod bending tests based on digital image correlation. Exp Mech 62(4):573–583

    Article  Google Scholar 

  26. Arregui-Dalmases C, Kerrigan J R, Sánchez-Molina D, Velázquez-Ameijide J, Crandall J R (2015) A review of pelvic fractures in adult pedestrians: experimental studies involving PMHS used to determine injury criteria for pedestrian dummies and component test procedures. Traffic Inj Prev 16(1):62–69

    Article  PubMed  Google Scholar 

  27. Rebollo-Soria MC, Arregui-Dalmases C, Sánchez-Molina D, Velázquez-Ameijide J, Galtés I (2016) Injury pattern in lethal motorbikes-pedestrian collisions, in the area of Barcelona, Spain. J Forensic Leg Med 43:80–84

    Article  PubMed  Google Scholar 

  28. Carretero-Alfaro D, Sánchez-Molina D, Martínez-Gonzalez E, Velázquez-Ameijide J, Arregui-Dalmases C (2013) Analysis of the accident of ‘El péndulo’ in the amusement park of Tibidabo in Barcelona. Dyna 88(3):344–351

    Google Scholar 

  29. Saks MJ (2009) The past and future of forensic science and the courts. Judicature 93(3)

  30. Garrett B, Mitchell G (2013) How jurors evaluate fingerprint evidence: the relative importance of match language, method information, and error acknowledgment. J Empir Leg Stud 10(3):484–511

    Article  Google Scholar 

  31. García-Vilana S, Sánchez-Molina D, Llumà J, Fernández-Osete I, Velázquez-Ameijide J, Martínez-González E (2021) A predictive model for fracture in human ribs based on in vitro acoustic emission data. Med Phys 48(9):5540–5548

    Article  PubMed  Google Scholar 

  32. Velázquez-Ameijide J, García-Vilana S, Sánchez-Molina D, Llumà J, Martínez-González E, Rebollo-Soria MC, Arregui-Dalmases C (2021) Prediction of mechanical properties of human rib cortical bone using fractal dimension. Comput Methods Biomech Biomed Eng 24(5):506–516

    Article  Google Scholar 

  33. Velázquez-Ameijide J, García-Vilana S, Sánchez-Molina D, Martínez-González E, Llumà J, Rebollo-Soria M C, Arregui-Dalmases C (2021) Influence of anthopometric variables on the mechanical properties of human rib cortical bone. Biomed Phys Eng Express 7(3):035013

    Article  Google Scholar 

  34. Weber M, Banaschak S, Rothschild MA (2020) Sharp force trauma with two katana swords: identifying the murder weapon by comparing tool marks on the skull bone. Int J Legal Med 1–10

  35. Hahn U, Hartmann S (2020) Reasonable doubt and alternative hypotheses: a Bayesian analysis [pre-print] http://philsci-archive.pitt.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sánchez-Molina.

Ethics declarations

Ethical approval

Yes

Research involving human participants and/or animals

Not applicable

Informed consent

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We proceed to develop the computation of the probability that a weapon is the cause of a rib stab-mark, given some geometrical conditions of the stab-mark obtained.

Recalling Eq. 2 considering that the set of measurable conditions \(\mathcal {C}\) is first given only by the geometrical features \(\mathcal {C}=G\) and introducing the conditions mentioned in the manuscript:

$$ P_{W_{i}}=\mathbb{P}(W_{i}|G)=\cfrac{\mathbb{P}(G|W_{i})}{\mathbb{P}(G|W_{0})+\mathbb{P}(G|W_{1})} $$
(8)

Considering a geometry G = (l, w, η) and each measure being in the interval (i, i + Δi), the probability \(\hat {P}_{i}:=\mathbb {P}(G|W_{i})\) is:

$$ \begin{array}{@{}rcl@{}} \hat{P}_{i}({\Delta}\ell_{l}, {\Delta}\ell_{w}, {\Delta}\eta) & = &\mathbb{P}(\ell_{l}<u<\ell_{l}+{\Delta}\ell_{l}, \ell_{w}<v<\ell_{w}\\ &&+{\Delta}\ell_{w}, \eta<w<\eta+{\Delta}\eta | W_{i}) \\ & = & \!\displaystyle{\int}_{\ell_{l}}^{\ell_{l}+{\Delta}\ell_{l}} \!\!{\int}_{\ell_{w}}^{\ell_{w}+{\Delta}\ell_{w}} \!\!{\int}_{\eta}^{\eta+{\Delta}\eta}\! f_{W_{i}}(u, v, w)\\ && \text{d}u\ \text{d}v\ \text{d}w \end{array} $$
(9)

And replacing in Eq. 8:

$$ P_{W_{i}} = \! \lim\limits_{\Delta\ell_{l}, {\Delta}\ell_{w},{\Delta}\eta \to 0}\! \frac{\hat{P}_{i}({\Delta}\ell_{l}, {\Delta}\ell_{w} {\Delta}\eta)}{\hat{P}_{1}\!({\Delta}\ell_{l}, {\Delta}\ell_{w}, {\Delta}\eta) + \hat{P}_{2}({\Delta}\ell_{l}, {\Delta}\ell_{w}, {\Delta}\eta)} $$
(10)

See that, for the previous limit, the probability that a measurement takes exactly a numerical value i is zero. Therefore, a limit of the type 0/0 is obtained and thus the L’Hôpital’s rule should be applied:

$$ \begin{array}{@{}rcl@{}}{ll} P_{W_{i}} = {\lim}_{{\Delta}\ell_{l}, {\Delta}\ell_{w}, {\Delta}\eta \to 0}\frac{ \partial_{1} \hat{P}_{i}}{\partial_{1} \hat{P}_{1} + \partial_{1} \hat{P}_{2}} \\ &= {\lim}_{{\Delta}\ell_{l}, {\Delta}\ell_{w}, {\Delta}\eta \to 0} \frac{ \partial_{1}\partial_{2}\partial_{3}\hat{P}_{i}}{\partial_{1}\partial_{2}\partial_{3} \hat{P}_{1} + \partial_{1}\partial_{2}\partial_{3} \hat{P}_{2}}\\ &= \cfrac{f_{W_{i}}(\ell_{l}, \ell_{w}, \eta)}{f_{W_{1}}(\ell_{l}, \ell_{w}, \eta)+f_{W_{2}}(\ell_{l}, \ell_{w}, \eta)} \end{array} $$
(11)

obtaining Eq. 3, for which the distributions \(f_{W_{i}}(\ell _{l},\ell _{w},\eta )\) can be directly computed. Furthermore, being the PCi independent random variables by definition, the probability density functions (PDF) can be factored as follows:

$$ f_{W_{i}}(\ell_{l},\ell_{w},\eta) = \phi_{i}(\ell_{l})\cdot \theta_{i}(\ell_{w})\cdot \psi_{i}(\eta) $$
(12)

The Bayesian model proposed, which now includes the quantitative variables related to the geometry G of the stab-mark, can be extended by considering the anatomical region Rk of the rib, which is a qualitative variable Rk = (Rant, Rlat, Rpost):

$$ \tilde{P}_{W_{i}} := \mathbb{P}(W_{i}|\ell_{l}, \ell_{w}, \eta;R_{k}) = \frac{f_{W_{i},R_{k}}(\ell_{l}, \ell_{w}, \eta)}{f_{W_{0},R_{k}}(\ell_{l}, \ell_{w}, \eta)+f_{W_{1},R_{k}}(\ell_{l}, \ell_{w}, \eta)} $$

corresponding to Eq. 3 where, again, the functions ϕik(l), 𝜃ik(w), and ψik(η) for each dimension or PC, each weapon i, and each anatomical region k will be obtained on the basis of the N = 150 stab-marks performed in the experimental tests.

Finally, the model can be improved to include the absence or occurrence of the central elliptical region Q ∈{0, 1} in the stab-mark; considering pi,Q as the probability of obtaining or not the elliptical region with the weapon i, then the probability \(P_{W_{i}}\) is:

$$ P_{W_{i}} := \mathbb{P}(W_{i}|\ell_{l}, \ell_{w}, \eta;R_{k};Q) = \frac{\tilde{P}_{W_{i}}\ p_{i,Q}}{\tilde{P}_{W_{0}}\ p_{0,Q} + \tilde{P}_{W_{1}}\ p_{1,Q}} $$

which is the final purposed model (4), where the probability is computed as pi,Q = Ni,1/Ni, and \(\tilde {P}_{W_{i}}\) is obtained using Eq. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Molina, D., Galtés, I., García-Vilana, S. et al. A probabilistic model for murder weapon identification using stab-marks in human ribs. Int J Legal Med 137, 1555–1567 (2023). https://doi.org/10.1007/s00414-022-02933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02933-8

Keywords

Navigation