Skip to main content
Log in

Bone fragment or bone powder? ATR-FTIR spectroscopy–based comparison of chemical composition and DNA preservation of bones after 10 years in a freezer

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Freezing bone samples to preserve their biomolecular properties for various analyses at a later time is a common practice. Storage temperature and freeze–thaw cycles are well-known factors affecting degradation of molecules in the bone, whereas less is known about the form in which the tissue is most stable. In general, as little intervention as possible is advised before storage. In the case of DNA analyses, homogenization of the bone shortly before DNA extraction is recommended. Because recent research on the DNA yield from frozen bone fragments and frozen bone powder indicates better DNA preservation in the latter, the aim of the study presented here was to investigate and compare the chemical composition of both types of samples (fragments versus powder) using ATR-FTIR spectroscopy. Pairs of bone fragments and bone powder originating from the same femur of 57 individuals from a Second World War mass grave, stored in a freezer at − 20 °C for 10 years, were analyzed. Prior to analysis, the stored fragments were ground into powder, whereas the stored powder was analyzed without any further preparation. Spectroscopic analysis was performed using ATR-FTIR spectroscopy. The spectra obtained were processed and analyzed to determine and compare the chemical composition of both types of samples. The results show that frozen powdered samples have significantly better-preserved organic matter and lower concentrations of B-type carbonates, but higher concentrations of A-type carbonates and stoichiometric apatite. In addition, there are more differences in the samples with a low DNA degradation index and less in the samples with a high DNA degradation index. Because the results are inconsistent with the current understanding of bone preservation, additional research into optimal preparation and long-term storage of bone samples is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

Notes

  1. www.promega.com/resources/tools/powerquantanalysis-tool

References

  1. Scarano A, Iezzi G, Piattelli A (2003) Common fixatives in hard-tissue histology BT - handbook of histology methods for bone and cartilage. In: An YH, Martin KL (eds). Totowa: Humana Press, pp 159–165

  2. Goldstein S, Frankenburg E, Kuhn J (1993) Biomechanics of bone. In: Nahum AM, Melvin JW (eds) Accidental injury. Springer, pp 198–223

  3. Yuehuei HA, Draughn RA (1999) Mechanical properties and testing methods of bone. In: Yuehuei HA, Freidman RJ (eds) Animal models in orthopaedic research. Boca Raton: CRC, pp 139–163

    Google Scholar 

  4. Hubel A, Spindler R, Skubitz APN (2014) Storage of human biospecimens: selection of the optimal storage temperature. Biopreserv Biobank 12:165–175. https://doi.org/10.1089/bio.2013.0084

    Article  PubMed  Google Scholar 

  5. McElderry J-DP, Kole MR, Morris MD (2011) Repeated freeze-thawing of bone tissue affects Raman bone quality measurements. J Biomed Opt 16:71407. https://doi.org/10.1117/1.3574525

    Article  Google Scholar 

  6. Pokines JT, King RE, Graham DD et al (2016) The effects of experimental freeze-thaw cycles to bone as a component of subaerial weathering. J Archaeol Sci Reports 6:594–602. https://doi.org/10.1016/j.jasrep.2016.03.023

    Article  Google Scholar 

  7. Wurm A, Steiger R, Ammann CG et al (2016) Changes in the chemical quality of bone grafts during clinical preparation detected by Raman spectroscopy. Biopreserv Biobank 14:319–323. https://doi.org/10.1089/bio.2015.0097

    Article  CAS  PubMed  Google Scholar 

  8. Grdina S, Friš EL, Podovšovnik E et al (2019) Storage of Second World War bone samples: bone fragments versus bone powder. Forensic Sci Int Genet Suppl Ser 7:175–176. https://doi.org/10.1016/j.fsigss.2019.09.068

    Article  Google Scholar 

  9. Nagy ZT (2010) A hands-on overview of tissue preservation methods for molecular genetic analyses. Org Divers Evol 10:91–105. https://doi.org/10.1007/s13127-010-0012-4

    Article  Google Scholar 

  10. Hummel S (2003) Methods, strategies and applications. Springer

    Google Scholar 

  11. Fredericks JD, Bennett P, Williams A, Rogers KD (2012) FTIR spectroscopy: a new diagnostic tool to aid DNA analysis from heated bone. Forensic Sci Int Genet 6:375–380. https://doi.org/10.1016/j.fsigen.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  12. Schwarz C, Debruyne R, Kuch M et al (2009) New insights from old bones: DNA preservation and degradation in permafrost preserved mammoth remains. Nucleic Acids Res 37:3215–3229. https://doi.org/10.1093/nar/gkp159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Francigny V, Hollund H, de Vogt A, et al (2013) Limits of ancient DNA extraction from teeth: the case of Sudanese Nubia. Nyame akuma 13–29

  14. Kontopoulos I, Penkman K, McAllister GD et al (2019) Petrous bone diagenesis: a multi-analytical approach. Palaeogeogr Palaeoclimatol Palaeoecol 518:143–154. https://doi.org/10.1016/j.palaeo.2019.01.005

    Article  Google Scholar 

  15. Kontopoulos I, Penkman K, Mullin VE et al (2020) Screening archaeological bone for palaeogenetic and palaeoproteomic studies. PLoS ONE 15:e0235146. https://doi.org/10.1371/journal.pone.0235146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leskovar T, Zupanič Pajnič I, Geršak ŽM et al (2020) ATR-FTIR spectroscopy combined with data manipulation as a pre-screening method to assess DNA preservation in skeletal remains. Forensic Sci Int Genet 44:102196. https://doi.org/10.1016/j.fsigen.2019.102196

    Article  CAS  PubMed  Google Scholar 

  17. Zupanic Pajnic I, Zupanc T, Balazic J et al (2017) Prediction of autosomal STR typing success in ancient and Second World War bone samples. Forensic Sci Int Genet 27:17–26. https://doi.org/10.1016/j.fsigen.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  18. Poetsch M, Konrad H, Helmus J et al (2016) Does zero really mean nothing?—first experiences with the new PowerQuantTM system in comparison to established real-time quantification kits. Int J Legal Med 130:935–940. https://doi.org/10.1007/s00414-016-1352-1

    Article  PubMed  Google Scholar 

  19. Zupanič Pajnič I, Fattorini P (2021) Strategy for STR typing of bones from the Second World War combining CE and NGS technology: a pilot study. Forensic Sci Int Genet 50:102401. https://doi.org/10.1016/j.fsigen.2020.102401

  20. Zupanic Pajnic I, Gornjak Pogorelc B, Balazic J (2010) Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia. Int J Legal Med 124:307–317. https://doi.org/10.1007/s00414-010-0431-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jamnik P (2010) Ugotavljanje identitete žrtev iz brezna pri Konfinu I. v arhivskih virih. In: Dežman J (ed) Poročilo Komisije Vlade Republike Slovenije za reševanje vprašanj prikritih grobišč. Ljubljana: Družina, pp 99–118

  22. Pajnič IZ (2016) Extraction of DNA from human skeletal material. Methods Mol Biol 1420:89–108. https://doi.org/10.1007/978-1-4939-3597-0_7

    Article  CAS  PubMed  Google Scholar 

  23. Pääbo S, Poinar H, Serre D et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. https://doi.org/10.1146/annurev.genet.37.110801.143214

    Article  CAS  PubMed  Google Scholar 

  24. Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756

    Article  CAS  Google Scholar 

  25. Qiagen Companies (2014) EZ1 DNA investigator handbook. Hilden: Qiagen Companies

  26. Parson W, Gusmão L, Hares DR et al (2014) DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142. https://doi.org/10.1016/j.fsigen.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  27. Lopes C de CA, Limirio PHJO, Novais VR, Dechichi P (2018) Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev 53:1–23. https://doi.org/10.1080/05704928.2018.1431923

  28. Rey C, Miquel JL, Facchini L et al (1995) Hydroxyl groups in bone mineral. Bone 16:583–586. https://doi.org/10.1016/8756-3282(95)00101-I

    Article  CAS  PubMed  Google Scholar 

  29. Olsen J, Heinemeier J, Bennike P et al (2008) Characterisation and blind testing of radiocarbon dating of cremated bone. J Archaeol Sci 35:791–800. https://doi.org/10.1016/j.jas.2007.06.011

    Article  Google Scholar 

  30. Thompson TJU, Gauthier M, Islam M (2009) The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone. J Archaeol Sci 36:910–914. https://doi.org/10.1016/j.jas.2008.11.013

    Article  Google Scholar 

  31. Wright LE, Schwarcz HP (1996) Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci 23:933–944. https://doi.org/10.1006/jasc.1996.0087

    Article  Google Scholar 

  32. Lebon M, Reiche I, Bahain JJ et al (2010) New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J Archaeol Sci 37:2265–2276. https://doi.org/10.1016/j.jas.2010.03.024

    Article  Google Scholar 

  33. Lebon M, Reiche I, Gallet X et al (2016) Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58:131–145

    Article  CAS  Google Scholar 

  34. Trueman CNG, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739. https://doi.org/10.1016/j.jas.2003.11.003

    Article  Google Scholar 

  35. Thompson TJU, Islam M, Bonniere M (2013) A new statistical approach for determining the crystallinity of heat-altered bone mineral from FTIR spectra. J Archaeol Sci 40:416–422. https://doi.org/10.1016/j.jas.2012.07.008

    Article  CAS  Google Scholar 

  36. Snoeck C, Lee-Thorp JA, Schulting RJ (2014) From bone to ash: Compositional and structural changes in burned modern and archaeological bone. Palaeogeogr Palaeoclimatol Palaeoecol 416:55–68. https://doi.org/10.1016/j.palaeo.2014.08.002

    Article  Google Scholar 

  37. Habermehl J, Skopinska J, Boccafoschi F et al (2005) Preparation of ready-to-use, stockable and reconstituted collagen. Macromol Biosci 5:821–828. https://doi.org/10.1002/mabi.200500102

    Article  CAS  PubMed  Google Scholar 

  38. Bonfield W, Gibson IR (2002) Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res 59:697–708. https://doi.org/10.1002/jbm.10044

    Article  CAS  PubMed  Google Scholar 

  39. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain. Calcif Tissue Int 49:383–388

    Article  CAS  Google Scholar 

  40. Madupalli H, Pavan B, Tecklenburg MMJ (2017) Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem 255:27–35. https://doi.org/10.1016/j.jssc.2017.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Querido W, Ailavajhala R, Padalkar M, Pleshko N (2018) Validated approaches for quantification of bone mineral crystallinity using transmission Fourier transform infrared (FT-IR), attenuated total reflection (ATR) FT-IR, and Raman spectroscopy. Appl Spectrosc 72:1581–1593. https://doi.org/10.1177/0003702818789165

    Article  CAS  PubMed  Google Scholar 

  42. Demšar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14:2349–2353

    Google Scholar 

  43. Promega Corporation (2019) PowerQuant System Technical Manual. Madison

  44. Ewing MM, Thompson JM, McLaren RS et al (2016) Human DNA quantification and sample quality assessment: developmental validation of the PowerQuant r) system. Forensic Sci Int Genet 23:166–177. https://doi.org/10.1016/j.fsigen.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  45. Salamon M, Tuross N, Arensburg B, Weiner S (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A 102:13783–13788

    Article  CAS  Google Scholar 

  46. Wadsworth C, Procopio N, Anderung C et al (2017) Comparing ancient DNA survival and proteome content in 69 archaeological cattle tooth and bone samples from multiple European sites. J Proteomics 158:1–8. https://doi.org/10.1016/j.jprot.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  47. Ottoni C, Bekaert B, Decorte R (2017) DNA Degradation: current knowledge and progress in DNA analysis. Taphon Hum Remain Forensic Anal Dead Depos Environ 65–80

  48. Campos PF, Craig OE, Turner-Walker G et al (2012) DNA in ancient bone – where is it located and how should we extract it? Ann Anat - Anat Anzeiger 194:7–16. https://doi.org/10.1016/j.aanat.2011.07.003

    Article  CAS  Google Scholar 

  49. Miloš A, Selmanović A, Smajlović L et al (2007) Success rates of nuclear short tandem repeat typing from different skeletal elements. Croat Med J 48:486–493

    PubMed  PubMed Central  Google Scholar 

  50. Mundorff AZ, Bartelink EJ, Mar-Cash E (2009) DNA preservation in skeletal elements from the World Trade Center Disaster: recommendations for mass fatality Management*,†. J Forensic Sci 54:739–745. https://doi.org/10.1111/j.1556-4029.2009.01045.x

    Article  CAS  PubMed  Google Scholar 

  51. Hagelberg E (2014) Analysis of DNA from bone: benefits versus losses. Conf Proc 95–112

  52. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  Google Scholar 

  53. Allentoft ME, Matthew C, David H et al (2012) The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc B Biol Sci 279:4724–4733. https://doi.org/10.1098/rspb.2012.1745

    Article  CAS  Google Scholar 

  54. Jewell SD, Srinivasan M, McCart LM et al (2002) Analysis of the molecular quality of human tissues: an experience from the Cooperative Human Tissue Network. Am J Clin Pathol 118:733–741. https://doi.org/10.1309/VPQL-RT21-X7YH-XDXK

    Article  CAS  PubMed  Google Scholar 

  55. Pooniya S, Lalwani S, Raina A et al (2014) Quality and quantity of extracted deoxyribonucleic Acid (DNA) from preserved soft tissues of putrefied unidentifiable human corpse. J Lab Physicians 6:31–35. https://doi.org/10.4103/0974-2727.129088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ayello J, Semidei-Pomales M, Preti R et al (1998) Effects of long-term storage at -90 degrees C of bone marrow and PBPC on cell recovery, viability, and clonogenic potential. J Hematother 7:385–390. https://doi.org/10.1089/scd.1.1998.7.385

    Article  CAS  PubMed  Google Scholar 

  57. Qvist P, Munk M, Hoyle N, Christiansen C (2004) Serum and plasma fragments of C-telopeptides of type I collagen (CTX) are stable during storage at low temperatures for 3 years. Clin Chim Acta 350:167–173. https://doi.org/10.1016/j.cccn.2004.07.024

    Article  CAS  PubMed  Google Scholar 

  58. Hedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328. https://doi.org/10.1111/1475-4754.00064

    Article  CAS  Google Scholar 

  59. Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196. https://doi.org/10.1016/0305-4403(90)90058-D

    Article  Google Scholar 

  60. Lebon M, Zazzo A, Reiche I (2014) Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeogr Palaeoclimatol Palaeoecol 416:110–119. https://doi.org/10.1016/j.palaeo.2014.08.001

    Article  Google Scholar 

  61. Miller LM, Vairavamurthy V, Chance MR et al (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO43- vibration. Biochim Biophys Acta - Gen Subj 1527:11–19. https://doi.org/10.1016/S0304-4165(01)00093-9

    Article  CAS  Google Scholar 

  62. Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in thev 4 PO4 domain. Calcif Tissue Int 46:384–394. https://doi.org/10.1007/BF02554969

    Article  CAS  PubMed  Google Scholar 

  63. Farlay D, Panczer G, Rey C et al (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445. https://doi.org/10.1007/s00774-009-0146-7

    Article  PubMed  PubMed Central  Google Scholar 

  64. Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167. https://doi.org/10.1016/j.palaeo.2008.03.038

    Article  Google Scholar 

  65. Figueiredo MM, Gamelas JAF, Martins AG (2012) Characterization of bone and bone-based graft materials using FTIR spectroscopy. In: Theophile T (ed) Infrared spectroscopy - life and biomedical sciences. Rijeka: InTech, pp 315–338

  66. Rey C, Collins B, Goehl T et al (1989) The carbonate environment in bone mineral: a resolution-enhanced fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164. https://doi.org/10.1007/BF02556059

    Article  CAS  PubMed  Google Scholar 

  67. Biltz RM, Pellegrino ED (1983) The composition of recrystallized bone mineral. J Dent Res 62:1190–1195. https://doi.org/10.1177/00220345830620120301

    Article  CAS  PubMed  Google Scholar 

  68. Kawasaki T, Takahashi S, Ikeda K (1985) Hydroxyapatite high-performance liquid chromatography: column performance for proteins. Eur J Biochem 152:361–371. https://doi.org/10.1111/j.1432-1033.1985.tb09206.x

    Article  CAS  PubMed  Google Scholar 

  69. Götherström A, Collins MJ, Angerbjörn A, Lidén K (2002) Bone preservation and DNA amplification. Archaeometry 44:395–404. https://doi.org/10.1111/1475-4754.00072

    Article  Google Scholar 

  70. Kubota T, Nakamura A, Toyoura K, Matsunaga K (2014) The effect of chemical potential on the thermodynamic stability of carbonate ions in hydroxyapatite. Acta Biomater 10:3716–3722. https://doi.org/10.1016/j.actbio.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  71. Nielsen-Marsh CM, Hedges REM, Mann T, Collins MJ (2000) A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochim Acta 365:129–139. https://doi.org/10.1016/S0040-6031(00)00620-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Slovenian Government Commission on Concealed Mass Graves for the support in the exhumations of Second World War victims.

Funding

This study was financially supported by the Slovenian Research Agency (the project “Determination of the most appropriate skeletal elements for molecular genetic identification of aged human remains,” J3-8214, and Research Group Archaeology, 0581–012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Leskovar.

Ethics declarations

Ethics approval

The research project was approved by the Slovenian Medical Ethics Committee (0120–481/2018–11 and 0120–350/2018/6).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 25 KB)

Supplementary file2 (XLSX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zupanič Pajnič, I., Leskovar, T. & Jerman, I. Bone fragment or bone powder? ATR-FTIR spectroscopy–based comparison of chemical composition and DNA preservation of bones after 10 years in a freezer. Int J Legal Med 135, 1695–1707 (2021). https://doi.org/10.1007/s00414-021-02620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02620-0

Keywords

Navigation