Skip to main content

Advertisement

Log in

Profiling the differences of gut microbial structure between schizophrenia patients with and without violent behaviors based on 16S rRNA gene sequencing

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Understanding the violence behaviors in schizophrenia patients has always been the focus of forensic psychiatry. Although many studies show gut microbiota could regulate behavior, to our knowledge, no studies have profiled the gut microbiota structure in schizophrenia patients with violence. We profiled the characteristics of gut microbiota structure in 26 schizophrenia patients with violence (V.SCZ) by comparing with that of 16 schizophrenia patients without violence (NV.SCZ) under the control of confounders, and found the differences of gut microbiota structure between the two groups. Violence was assessed by the MacArthur Community Violence Instrument. Psychiatric symptoms were assessed by the Positive and Negative Syndrome Scale. The 16S rRNA gene sequencing was used to identify and relatively quantify gut microbial composition. Bioinformatics analysis was used to find differential gut microbial composition between the V.SCZ and NV.SCZ groups. Fifty-nine differential microbial taxonomic compositions were found between the two groups. Fifteen gut microbial compositions were the key microbial taxonomic compositions responsible for the differences between the V.SCZ and NV.SCZ groups, including five enriched microbial taxonomic compositions (p_Bacteroidetes, c_Bacteroidia, o_Bacteroidales, f_Prevotellaceae, s_Bacteroides_uniformis), and ten impoverished microbial taxonomic compositions (p_Actinobacteria, c_unidentified_Actinobacteria, o_Bifidobacteriales, f_ Enterococcaceae, f_Veillonellaceae, f_Bifidobacteriaceae, g_Enterococcus, g_Candidatus_Saccharimonas, g_Bifidobacterium, and s_Bifidobacterium_pseudocatenulatum). This study profiled the differences of gut microbiota between schizophrenia patients with violence and without violence. These results could enrich the etiological understanding of violence in schizophrenia and might be helpful to violence management in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data and materials are available from the corresponding author on reasonable request.

References

  1. Wallace C, Mullen PE, Burgess P (2004) Criminal offending in schizophrenia over a 25-year period marked by deinstitutionalization and increasing prevalence of comorbid substance use disorders. Am J Psychiatry 161(4):716–727. https://doi.org/10.1176/appi.ajp.161.4.716

    Article  PubMed  Google Scholar 

  2. Large MM, Nielssen O (2011) Violence in first-episode psychosis: a systematic review and meta-analysis. Schizophr Res 125(2–3):209–220

    Article  PubMed  Google Scholar 

  3. Hu J, Yang M, Huang X, Coid J (2011) Forensic psychiatry in China. Int J Law Psychiatry 34(1):7–12. https://doi.org/10.1016/j.ijlp.2010.11.002

    Article  PubMed  Google Scholar 

  4. Fjellvang M, Groning L, Haukvik UK (2018) Imaging violence in schizophrenia: a systematic review and critical discussion of the MRI literature. Front Psych 9:333. https://doi.org/10.3389/fpsyt.2018.00333

    Article  Google Scholar 

  5. Hodgins S (2008) Violent behaviour among people with schizophrenia: a framework for investigations of causes, and effective treatment, and prevention. Philos Trans R Soc Lond Ser B Biol Sci 363(1503):2505–2518. https://doi.org/10.1098/rstb.2008.0034

    Article  Google Scholar 

  6. Elbogen EB, Johnson SC (2009) The intricate link between violence and mental disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry 66(2):152–161. https://doi.org/10.1001/archgenpsychiatry.2008.537

    Article  PubMed  Google Scholar 

  7. Fazel S, Langstrom N, Hjern A, Grann M, Lichtenstein P (2009) Schizophrenia, substance abuse, and violent crime. JAMA 301(19):2016–2023. https://doi.org/10.1001/jama.2009.675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poldrack RA, Monahan J, Imrey PB, Reyna V, Raichle ME, Faigman D, Buckholtz JW (2018) Predicting violent behavior: what can neuroscience add? Trends Cogn Sci 22(2):111–123. https://doi.org/10.1016/j.tics.2017.11.003

    Article  PubMed  Google Scholar 

  9. Checknita D, Maussion G, Labonte B, Comai S, Tremblay RE, Vitaro F, Turecki N, Bertazzo A, Gobbi G, Cote G, Turecki G (2015) Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder. Br J Psychiatry 206(3):216–222. https://doi.org/10.1192/bjp.bp.114.144964

    Article  CAS  PubMed  Google Scholar 

  10. Tang X, Jin J, Tang Y, Cao J, Huang J (2017) Risk assessment of aggressive behavior in Chinese patients with schizophrenia by fMRI and COMT gene. Neuropsychiatr Dis Treat 13:387–395. https://doi.org/10.2147/ndt.S126356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ochberg FM, Brantley AC, Hare RD, Houk PD, Ianni R, James E, O’Toole ME, Saathoff G (2003) Lethal predators: psychopathic, sadistic, and sane. Int J Emerg Ment Health 5(3):121–136

    PubMed  Google Scholar 

  12. Rosenberg E, Zilber-Rosenberg I (2018) The hologenome concept of evolution after 10 years. Microbiome 6(1):78. https://doi.org/10.1186/s40168-018-0457-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen L, Garmaeva S, Zhernakova A, Fu J, Wijmenga C (2018) A system biology perspective on environment-host-microbe interactions. Hum Mol Genet 27(R2):R187–r194. https://doi.org/10.1093/hmg/ddy137

    Article  CAS  PubMed  Google Scholar 

  14. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  16. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106(10):3698–3703. https://doi.org/10.1073/pnas.0812874106

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao CC, Patel B, Yan R, Blain M (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22(6):586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC, Ardura-Fabregat A, de Lima KA, Gutierrez-Vazquez C, Hewson P, Staszewski O, Blain M, Healy L, Neziraj T, Borio M, Wheeler M, Dragin LL, Laplaud DA, Antel J, Alvarez JI, Prinz M, Quintana FJ (2018) Microglial control of astrocytes in response to microbial metabolites. Nature 557(7707):724–728. https://doi.org/10.1038/s41586-018-0119-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480.e1412. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evans SJ, Bassis CM, Hein R, Assari S, Flowers SA, Kelly MB, Young VB, Ellingrod VE, Mcinnis MG (2017) The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res 87:23–29

    Article  PubMed  Google Scholar 

  21. Mussap M, Noto A, Fanos V (2016) Metabolomics of autism spectrum disorders: early insights regarding mammalian-microbial cometabolites. Expert Rev Mol Diagn 16(8):869–881. https://doi.org/10.1080/14737159.2016.1202765

    Article  CAS  PubMed  Google Scholar 

  22. Schwarz E, Maukonen J, Hyytiäinen T, Kieseppä T, Orešič M, Sabunciyan S, Mantere O, Saarela M, Yolken R, Suvisaari J (2018) Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res 192:398–403. https://doi.org/10.1016/j.schres.2017.04.017

    Article  PubMed  Google Scholar 

  23. Luo Y, Zeng B, Zeng L, Du X, Li B, Huo R, Liu L, Wang H, Dong M, Pan J, Zheng P, Zhou C, Wei H, Xie P (2018) Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl Psychiatry 8(1):187. https://doi.org/10.1038/s41398-018-0240-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, Zhang M, Hu S, Liang Y (2018) Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res 197:470–477. https://doi.org/10.1016/j.schres.2018.01.002

    Article  PubMed  Google Scholar 

  25. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X, Yang D, Yang Y, Meng H, Li W, Melgiri ND, Licinio J, Wei H, Xie P (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796. https://doi.org/10.1038/mp.2016.44

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt C (2015) Mental health: thinking from the gut. Nature 518(7540):S12–S15. https://doi.org/10.1038/518S13a

    Article  CAS  PubMed  Google Scholar 

  27. Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23(3):187–192

    Article  CAS  PubMed  Google Scholar 

  28. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742. https://doi.org/10.1038/nrmicro2876

    Article  CAS  PubMed  Google Scholar 

  29. Rohrscheib CE, Bondy E, Josh P, Riegler M, Eyles D, van Swinderen B, Weible MW, Brownlie JC (2015) Wolbachia influences the production of octopamine and affects Drosophila male aggression. Appl Environ Microbiol 81(14):4573–4580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36(5):305–312

    Article  CAS  PubMed  Google Scholar 

  31. He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng HF, Chen MX, Chen ZH, Ji GY, Zheng ZD, Mujagond P, Chen XJ, Rong ZH, Chen P, Lyu LY, Wang X, Wu CB, Yu N, Xu YJ, Yin J, Raes J, Knight R, Ma WJ, Zhou HW (2018) Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24(10):1532–1535. https://doi.org/10.1038/s41591-018-0164-x

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Guo Z, Xue Z, Sun Z, Zhang M, Wang L, Wang G, Wang F, Xu J, Cao H, Xu H, Lv Q, Zhong Z, Chen Y, Qimuge S, Menghe B, Zheng Y, Zhao L, Chen W, Zhang H (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9(9):1979–1990. https://doi.org/10.1038/ismej.2015.11

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monahan J, Steadman HJ, Silver E, Appelbaum PS, Clark Robbins P, Mulvey EP et al (2001) Rethinking risk assessment. The MacArthur study of mental disorder and violence. Oxford University Press, New York

    Google Scholar 

  35. Liou J-M, Chen C-C, Chang C-M, Fang Y-J, Bair M-J, Chen P-Y, Chang C-Y, Hsu Y-C, Chen M-J, Chen C-C, Lee J-Y, Yang T-H, Luo J-C, Chen C-Y, Hsu W-F, Chen Y-N, Wu J-Y, Lin J-T, Lu T-P, Chuang EY, El-Omar EM, Wu M-S (2019) Long-term changes of gut microbiota, antibiotic resistance, and metabolic parameters after Helicobacter pylori eradication: a multicentre, open-label, randomised trial. Lancet Infect Dis 19(10):1109–1120. https://doi.org/10.1016/S1473-3099(19)30272-5

    Article  CAS  PubMed  Google Scholar 

  36. Annavajhala MK, Gomez-Simmonds A, Macesic N, Sullivan SB, Kress A, Khan SD, Giddins MJ, Stump S, Kim GI, Narain R, Verna EC, Uhlemann AC (2019) Colonizing multidrug-resistant bacteria and the longitudinal evolution of the intestinal microbiome after liver transplantation. Nat Commun 10(1):4715. https://doi.org/10.1038/s41467-019-12633-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 17(1):3. https://doi.org/10.14806/ej.17.1.200

  38. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  39. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methe B, DeSantis TZ, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494–504. https://doi.org/10.1101/gr.112730.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5(4):e1000352. https://doi.org/10.1371/journal.pcbi.1000352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, Li L, Ruan B (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194. https://doi.org/10.1016/j.bbi.2015.03.016

    Article  PubMed  Google Scholar 

  45. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linlokken A, Wilson R, Rudi K (2014) Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26(8):1155–1162. https://doi.org/10.1111/nmo.12378

    Article  CAS  PubMed  Google Scholar 

  46. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360. https://doi.org/10.1002/mds.26307

    Article  CAS  PubMed  Google Scholar 

  47. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x

    Article  CAS  PubMed  Google Scholar 

  48. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  49. Chakravortty D, Koide N, Kato Y, Sugiyama T, Mu MM, Yoshida T, Yokochi T (2000) The inhibitory action of butyrate on lipopolysaccharide-induced nitric oxide production in RAW 264.7 murine macrophage cells. J Endotoxin Res 6(3):243–247

    Article  CAS  PubMed  Google Scholar 

  50. Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D (2008) Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 19(9):587–593. https://doi.org/10.1016/j.jnutbio.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  51. Cox MA, Jackson J, Stanton M, Rojas-Triana A, Bober L, Laverty M, Yang X, Zhu F, Liu J, Wang S, Monsma F, Vassileva G, Maguire M, Gustafson E, Bayne M, Chou CC, Lundell D, Jenh CH (2009) Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. World J Gastroenterol 15(44):5549–5557. https://doi.org/10.3748/wjg.15.5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, Sugimoto Y, Narumiya S (2009) Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med 15(6):633–640. https://doi.org/10.1038/nm.1968

    Article  CAS  PubMed  Google Scholar 

  53. Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M (2017) The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol 54(6):4432–4451. https://doi.org/10.1007/s12035-016-0004-2

    Article  CAS  PubMed  Google Scholar 

  54. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, Tilg H, Watson A, Wells JM (2014) Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol 14:189. https://doi.org/10.1186/s12876-014-0189-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferreira TM, Leonel AJ, Melo MA, Santos RR, Cara DC, Cardoso VN, Correia MI, Alvarez-Leite JI (2012) Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-fluorouracil administration. Lipids 47(7):669–678. https://doi.org/10.1007/s11745-012-3680-3

    Article  CAS  PubMed  Google Scholar 

  56. Yuan X, Zhang P, Wang Y, Liu Y, Li X, Kumar BU, Hei G, Lv L, Huang XF, Fan X, Song X (2018) Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr Res 201:299–306. https://doi.org/10.1016/j.schres.2018.05.017

    Article  PubMed  Google Scholar 

  57. Okubo R, Koga M, Katsumata N, Odamaki T, Matsuyama S, Oka M, Narita H, Hashimoto N, Kusumi I, Xiao J, Matsuoka YJ (2019) Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: a proof-of-concept study. J Affect Disord 245:377–385. https://doi.org/10.1016/j.jad.2018.11.011

    Article  PubMed  Google Scholar 

  58. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12):1132–1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ng QX, Peters C, Ho CYX, Lim Donovan Y, Yeo W-S (2018) A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affect Disord 228:13–19. https://doi.org/10.1016/j.jad.2017.11.063

    Article  PubMed  Google Scholar 

  60. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39(2):372–385. https://doi.org/10.1016/j.immuni.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  61. Quintana FJ, Sherr DH (2013) Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 65(4):1148–1161. https://doi.org/10.1124/pr.113.007823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schwarcz R, Stone TW (2017) The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology 112(Pt B):237–247. https://doi.org/10.1016/j.neuropharm.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  63. Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357(6349). https://doi.org/10.1126/science.aaf9794

  64. Gao K, Mu CL, Farzi A, Zhu WY (2020) Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr 11(3):709–723. https://doi.org/10.1093/advances/nmz127

    Article  PubMed  Google Scholar 

  65. Savitz J (2020) The kynurenine pathway: a finger in every pie. Mol Psychiatry 25(1):131–147. https://doi.org/10.1038/s41380-019-0414-4

    Article  PubMed  Google Scholar 

  66. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848. https://doi.org/10.1016/j.cell.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  67. (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

  68. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  69. Komaroff AL (2017) The microbiome and risk for obesity and diabetes. Jama 317(4):355–356. https://doi.org/10.1001/jama.2016.20099

    Article  PubMed  Google Scholar 

  70. Davey KJ, O’Mahony SM, Schellekens H, O’Sullivan O, Bienenstock J, Cotter PD, Dinan TG, Cryan JF (2012) Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology 221(1):155–169. https://doi.org/10.1007/s00213-011-2555-2

    Article  CAS  PubMed  Google Scholar 

  71. Davey KJ, Cotter PD, O’Sullivan O, Crispie F, Dinan TG, Cryan JF, O’Mahony SM (2013) Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry 3:e309. https://doi.org/10.1038/tp.2013.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was supported by the Key Research and Development Project of Science and Technology Department, Sichuan Province (Grant No. 2017SZ0062); the Graduate Student Research Innovation Foundation of Sichuan University (Grant No. 2018YJSY098); and the China Postdoctoral Science Foundation (Grant No. 2020TQ0219).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajun Xu or Junmei Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Disclaimer

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xu, J., Wang, H. et al. Profiling the differences of gut microbial structure between schizophrenia patients with and without violent behaviors based on 16S rRNA gene sequencing. Int J Legal Med 135, 131–141 (2021). https://doi.org/10.1007/s00414-020-02439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02439-1

Keywords

Navigation