Skip to main content

Advertisement

Log in

Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Body fluids are one of the most important pieces of evidence encountered in forensic cases especially in cases of sexual assault. Analysis of such evidence can help to establish a link between the perpetrator, the victim, and the crime scene and thereby assist in crime reconstruction. However, one of the biggest challenges faced by the investigators in sexual assault cases is that of ascertaining the issue of consent of the victim. In this matter, differentiation of menstrual blood (either in dried or stained form) from traumatic peripheral blood can give a potential solution on this particular aspect. A number of studies have been attempted to differentiate these two body fluids using various biochemical and serological methods. However, the methods employed are limited by factors such as sample destructivity and non-specificity, and the methods are susceptible to false positive results. In the present study, the scope of attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy in discriminating samples of menstrual blood and peripheral blood has been investigated, in combination with chemometric tools such as principal component analysis (PCA), partial least square regression (PLSR), and linear discriminant analysis (LDA). PCA resulted in 93.3% accuracy, whereas PLSR and LDA resulted in 100% accuracy for the discrimination of peripheral blood from menstrual blood. Application of PCA for the discrimination of menstrual blood from vaginal fluid and seminal fluid delivered 100% classification. Similarly, 100% classification was achieved while differentiating between menstrual blood and blood look-alike substances. Furthermore, in the current study, the effect of substrates on the analysis of menstrual blood has also been studied and described.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17. https://doi.org/10.1016/j.forsciint.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  2. An JH, Shin KJ, Yang WI, Lee HY (2012) Body fluid identification in forensics. BMB Rep 45:545–553. https://doi.org/10.5483/BMBRep.2012.45.10.206

    Article  CAS  PubMed  Google Scholar 

  3. Holtkötter H, Dias Filho CR, Schwender K, Stadler C, Vennemann M, Pacheco AC, Roca G (2018) Forensic differentiation between peripheral and menstrual blood in cases of alleged sexual assault—validating an immunochromatographic multiplex assay for simultaneous detection of human hemoglobin and D-dimer. Int J Legal Med 132:683–690. https://doi.org/10.1007/s00414-017-1719-y

    Article  PubMed  Google Scholar 

  4. Baker DJ, Grimes EA, Hopwood AJ (2011) D-dimer assays for the identification of menstrual blood. Forensic Sci Int 212:210–214. https://doi.org/10.1016/j.forsciint.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  5. Jakubowska J, Maciejewska A, Bielawski KP, Pawłowski R (2014) mRNA heptaplex protocol for distinguishing between menstrual and peripheral blood. Forensic Sci Int Genet 13:53–60. https://doi.org/10.1016/j.fsigen.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  6. Gray D, Frascione N, Daniel B (2012) Development of an immunoassay for the differentiation of menstrual blood from peripheral blood. Forensic Sci Int 220:12–18. https://doi.org/10.1016/j.forsciint.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  7. Juusola J, Ballantyne J (2007) mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J Forensic Sci 52:1252–1262. https://doi.org/10.1111/j.1556-4029.2007.00550.x

    Article  CAS  PubMed  Google Scholar 

  8. Jakubowska J, Maciejewska A, Pawłowski R, Bielawski KP (2013) mRNA profiling for vaginal fluid and menstrual blood identification. Forensic Sci Int Genet 7:272–278. https://doi.org/10.1016/j.fsigen.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  9. Hanson EK, Mirza M, Rekab K, Ballantyne J (2014) The identification of menstrual blood in forensic samples by logistic regression modeling of miRNA expression. Electrophoresis 35:3087–3095. https://doi.org/10.1002/elps.201400171

    Article  CAS  PubMed  Google Scholar 

  10. Choi A, Shin KJ, Yang WI, Lee HY (2014) Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med 128:33–41. https://doi.org/10.1007/s00414-013-0918-4

    Article  PubMed  Google Scholar 

  11. Hanson EK, Ballantyne J (2013) Rapid and inexpensive body fluid identification by RNA profiling-based multiplex high resolution melt (HRM) analysis [version 1; peer review: 2 approved]. F1000Research 2. https://doi.org/10.12688/f1000research.2-281.v1

    Article  PubMed  Google Scholar 

  12. Yang H, Zhou B, Prinz M, Siegel D (2012) Proteomic analysis of menstrual blood. Mol Cell Proteomics 11:1024 LP–1021035. https://doi.org/10.1074/mcp.M112.018390

    Article  CAS  Google Scholar 

  13. Whitehead PH, Divall GB (1974) The identification of menstrual blood — the immunoelectrophoretic characterisation of soluble fibrinogen from menstrual bloodstain extracts. Forensic Sci 4:53–62. https://doi.org/10.1016/0300-9432(74)90076-4

    Article  CAS  PubMed  Google Scholar 

  14. Akutsu T, Watanabe K, Motani H, Iwase H, Sakurada K (2012) Evaluation of latex agglutination tests for fibrin–fibrinogen degradation products in the forensic identification of menstrual blood. Legal Med 14:51–54. https://doi.org/10.1016/j.legalmed.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  15. Whitehead PH, Divall GB (1973) Assay of “soluble fibrinogen” in bloodstain extracts as an aid to identification of menstrual blood in forensic science: preliminary findings. Clin Chem 19:762 LP–762765

    Article  Google Scholar 

  16. Divall GB, Ismail M (1983) Lactate dehydrogenase isozymes in vaginal swab extracts: a problem for the identification of menstrual blood. Forensic Sci Int 21:139–147. https://doi.org/10.1016/0379-0738(83)90102-0

    Article  CAS  PubMed  Google Scholar 

  17. Bauer M, Patzelt D (2008) Identification of menstrual blood by real time RT-PCR: technical improvements and the practical value of negative test results. Forensic Sci Int 174:55–59. https://doi.org/10.1016/j.forsciint.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  18. Ota S, Furuya Y, Fujii K (1965) Identification of menstrual blood stains--experimental studies on the detection of glycogen of vaginal epithelial cells. Nihon Hoigaku Zasshi 19:300–305

    CAS  PubMed  Google Scholar 

  19. Haas C, Klesser B, Maake C, Bär W, Kratzer A (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int Genet 3:80–88. https://doi.org/10.1016/j.fsigen.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  20. Salamonsen LA, Kovacs GT, Findlay JK (1999) Current concepts of the mechanisms of menstruation. Best Pract Res Clin Obstet Gynaecol 13:161–179. https://doi.org/10.1053/beog.1999.0015

    Article  CAS  Google Scholar 

  21. Quinn AA, Elkins KM (2017) The differentiation of menstrual from venous blood and other body fluids on various substrates using ATR FT-IR spectroscopy. J Forensic Sci 62:197–204. https://doi.org/10.1111/1556-4029.13250

    Article  CAS  PubMed  Google Scholar 

  22. Sikirzhytskaya A, Sikirzhytski V, Lednev IK (2014) Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood. J Biophotonics 7:59–67. https://doi.org/10.1002/jbio.201200191

    Article  CAS  PubMed  Google Scholar 

  23. Roeder AD, Haas C (2013) mRNA profiling using a minimum of five mRNA markers per body fluid and a novel scoring method for body fluid identification. Int J Legal Med 127:707–721. https://doi.org/10.1007/s00414-012-0794-3

    Article  PubMed  Google Scholar 

  24. Liang Q, Sun H, Wu X, Ou X, Gao G, Jin Y, Tong D (2018) Development of new mRNA markers for the identification of menstrual blood. Ann Clin Lab Sci 48:55–62

    CAS  PubMed  Google Scholar 

  25. Richard MLL, Harper KA, Craig RL, Onorato AJ, Robertson JM, Donfack J (2012) Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. Forensic Sci Int Genet 6:452–460

    Article  CAS  PubMed  Google Scholar 

  26. Bauer M, Patzelt D (2002) Evaluation of mRNA markers for the identification of menstrual blood. J Forensic Sci 47:1278–1282. https://doi.org/10.1520/JFS15560J

    Article  CAS  PubMed  Google Scholar 

  27. Juusola J, Ballantyne J (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 152:1–12. https://doi.org/10.1016/j.forsciint.2005.02.020

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Zhang J, Luo H, Ye Y, Yan J, Hou Y (2013) Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Sci Int Genet 7:116–123. https://doi.org/10.1016/j.fsigen.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  29. Silva SS (2015) Forensic miRNA : potential biomarker for body fluids ? Forensic Sci Int Genet 14:1–10. https://doi.org/10.1016/j.fsigen.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  30. Orphanou C-M (2015) The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int 252:e10–e16. https://doi.org/10.1016/j.forsciint.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  31. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120. https://doi.org/10.3109/10409239509085140

    Article  CAS  PubMed  Google Scholar 

  32. Wood BR, Quinn MA, Tait B, Ashdown M, Hislop T, Romeo M, McNaughton D (1998) FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Biospectroscopy 4:75–91. https://doi.org/10.1002/(SICI)1520-6343(1998)4:2<75::AID-BSPY1>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  33. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 1758:858–867. https://doi.org/10.1016/j.bbamem.2006.02.011

    Article  CAS  Google Scholar 

  34. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767:1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  Google Scholar 

  35. Ollesch J, Drees SL, Heise HM, Behrens T, Brüning T, Gerwert K (2013) FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification. Analyst 138:4092–4102. https://doi.org/10.1039/C3AN00337J

    Article  CAS  PubMed  Google Scholar 

  36. Goodpaster JV, Liszewski EA (2009) Forensic analysis of dyed textile fibers. Anal Bioanal Chem 394:2009–2018. https://doi.org/10.1007/s00216-009-2885-7

    Article  CAS  PubMed  Google Scholar 

  37. Manheim J, Doty KC, McLaughlin G, Lednev IK (2016) Forensic hair differentiation using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Appl Spectrosc 70:1109–1117. https://doi.org/10.1177/0003702816652321

    Article  CAS  PubMed  Google Scholar 

  38. Sonnex E, Almond MJ, Baum JV, Bond JW (2014) Identification of forged Bank of England £20 banknotes using IR spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 118:1158–1163. https://doi.org/10.1016/j.saa.2013.09.115

    Article  CAS  Google Scholar 

  39. Harkins TR, Harris JT, Shreve OD (1959) Identification of pigments in paint products by infrared spectroscopy. Anal Chem 31:541–545. https://doi.org/10.1021/ac50164a025

    Article  CAS  Google Scholar 

  40. Bueno J, Sikirzhytski V, Lednev IK (2013) ATR-FTIR spectroscopy for gunshot residue analysis: potential for ammunition determination. Anal Chem 85:7287–7294. https://doi.org/10.1021/ac4011843

    Article  CAS  PubMed  Google Scholar 

  41. Asri MNM, Nur Syuhaila Mat Desa W, Ismail D (2015) Fourier transform infrared (FTIR) spectroscopy with chemometric techniques for the classification of ballpoint pen inks. AJFSFM 1:194–200. https://doi.org/10.12816/0017699

    Article  Google Scholar 

  42. Causin V, Casamassima R, Marega C, Maida P, Schiavone S, Marigo A, Villari A (2008) The discrimination potential of ultraviolet-visible spectrophotometry, thin layer chromatography, and Fourier transform infrared spectroscopy for the forensic analysis of black and blue ballpoint inks. J Forensic Sci 53:1468–1473. https://doi.org/10.1111/j.1556-4029.2008.00867.x

    Article  CAS  PubMed  Google Scholar 

  43. Lapachinske SF, Okai GG, dos Santos A, de Bairros AV, Yonamine M (2015) Analysis of cocaine and its adulterants in drugs for international trafficking seized by the Brazilian Federal Police. Forensic Sci Int 247:48–53. https://doi.org/10.1016/j.forsciint.2014.11.028

    Article  CAS  PubMed  Google Scholar 

  44. Yadav PK, Sharma RM (2019) Classification of illicit liquors based on their geographic origin using attenuated total reflectance (ATR) – Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Forensic Sci Int 295:e1–e5. https://doi.org/10.1016/j.forsciint.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  45. Sharma V, Bhardwaj S, Kumar R (2019) On the spectroscopic investigation of Kohl stains via ATR-FTIR and multivariate analysis: application in forensic trace evidence. Vib Spectrosc 101:81–91. https://doi.org/10.1016/j.vibspec.2019.02.006

    Article  CAS  Google Scholar 

  46. Gładysz M, Król M, Kościelniak P (2017) Differentiation of red lipsticks using the attenuated total reflection technique supported by two chemometric methods. Forensic Sci Int 280:130–138. https://doi.org/10.1016/j.forsciint.2017.09.019

    Article  CAS  PubMed  Google Scholar 

  47. Sharma V, Bharti A, Kumar R (2019) On the spectroscopic investigation of lipstick stains: forensic trace evidence. Spectrochim Acta A Mol Biomol Spectrosc 215:48–57. https://doi.org/10.1016/j.saa.2019.02.093

    Article  CAS  PubMed  Google Scholar 

  48. De Wael K, Lepot L, Gason F, Gilbert B (2008) In search of blood—detection of minute particles using spectroscopic methods. Forensic Sci Int 180:37–42. https://doi.org/10.1016/j.forsciint.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  49. Elkins KM (2011) Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy. J Forensic Sci 56:1580–1587. https://doi.org/10.1111/j.1556-4029.2011.01870.x

    Article  CAS  PubMed  Google Scholar 

  50. Gregório I, Zapata F, Torre M, García-Ruiz C (2017) Statistical approach for ATR-FTIR screening of semen in sexual evidence. Talanta 174:853–857. https://doi.org/10.1016/j.talanta.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  51. Gregório I, Zapata F, García-Ruiz C (2017) Analysis of human bodily fluids on superabsorbent pads by ATR-FTIR. Talanta 162:634–640. https://doi.org/10.1016/j.talanta.2016.10.061

    Article  CAS  PubMed  Google Scholar 

  52. Lin H, Zhang Y, Wang Q, Li B, Huang P, Wang Z (2017) Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy. Sci Rep 7:13254. https://doi.org/10.1038/s41598-017-13725-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin H, Zhang Y, Wang Q, Li B, Fan S, Wang Z (2018) Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment. Int J Legal Med 132:667–674. https://doi.org/10.1007/s00414-017-1634-2

    Article  PubMed  Google Scholar 

  54. Zhang Y, Wang Q, Li B, Wang Z, Li C, Yao Y, Huang P, Zhanyuan W (2017) Changes in attenuated total reflection Fourier transform infrared spectra as blood dries out. J Forensic Sci 62:761–767. https://doi.org/10.1111/1556-4029.13324

    Article  PubMed  Google Scholar 

  55. Takamura A, Watanabe K, Akutsu T, Ozawa T (2018) Soft and robust identification of body fluid using Fourier transform infrared spectroscopy and chemometric strategies for forensic analysis. Sci Rep 8:8459. https://doi.org/10.1038/s41598-018-26873-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takamura A, Watanabe K, Akutsu T, Ikegaya H, Ozawa T (2017) Spectral mining for discriminating blood origins in the presence of substrate interference via attenuated total reflection Fourier transform infrared spectroscopy: postmortem or antemortem blood? Anal Chem 89:9797–9804. https://doi.org/10.1021/acs.analchem.7b01756

    Article  CAS  PubMed  Google Scholar 

  57. Kumar R, Sharma V (2018) Chemometrics in forensic science. TrAC Trends Anal Chem 105:191–201. https://doi.org/10.1016/j.trac.2018.05.010

    Article  CAS  Google Scholar 

  58. Gautam R, Vanga S, Ariese F, Umapathy S (2015) Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech Instrum 2:8. https://doi.org/10.1140/epjti/s40485-015-0018-6

    Article  Google Scholar 

  59. Wu J (2014) Research on several problems in partial least squares regression analysis. Open Electr Electron Eng J 8:754–758

    Article  Google Scholar 

  60. Adams KM (1979) Linear discriminant analysis in clinical neuropsychology research. J Clin Neuropsychol 1:259–272. https://doi.org/10.1080/01688637908414455

    Article  Google Scholar 

  61. Morillas AV, Gooch J, Frascione N (2018) Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta 184:1–6. https://doi.org/10.1016/j.Talanta.2018.02.110

    Article  CAS  PubMed  Google Scholar 

  62. Unscrambler X (CAMO Software AS, Oslo, Norway)

  63. Zapata F, de la Ossa MÁF, García-Ruiz C (2016) Differentiation of body fluid stains on fabrics using external reflection Fourier transform infrared spectroscopy (FT-IR) and chemometrics. Appl Spectrosc 70:654–665. https://doi.org/10.1177/0003702816631303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would sincerely like to thank the University Grants Commission (UGC), Ministry of Human Resource Development, Govt. of India, for financial assistance and for providing laboratory facilities in the Department of Forensic Science, Punjabi University, Patiala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh.

Ethics declarations

Ethical approval

All procedures performed in this study involving human participants were in accordance with the Institutional Ethical Committee (IEC), Punjabi University, Patiala, 147002, with letter number IEC/03-2017/08. All the participants were informed about the study and their consent was duly recorded.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Chophi, R. & Singh, R. Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Int J Legal Med 134, 63–77 (2020). https://doi.org/10.1007/s00414-019-02134-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02134-w

Keywords

Navigation