Skip to main content

Advertisement

Log in

Sex determination of a Tunisian population by CT scan analysis of the skull

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

It is widely accepted that the estimation of biological attributes in the human skeleton is more accurate when population-specific standards are applied. With the shortage of such data for contemporary North African populations, it is duly required to establish population-specific standards. We present here the first craniometric standards for sex determination of a contemporary Tunisian population. The aim of this study was to analyze the correlation between sex and metric parameters of the skull in this population using CT scan analysis and to generate proper reliable standards for sex determination of a complete or fragmented skull. The study sample comprised cranial multislice computed tomography scans of 510 individuals equally distributed by sex. ASIRTM software in a General ElectricTM workstation was used to position 37 landmarks along the volume-rendered images and the multiplanar slices, defining 27 inter-landmark distances. Frontal and parietal bone thickness was also measured for each case. The data were analyzed using basic descriptive statistics and logistic regression with cross-validation of classification results. All of the measurements were sexually dimorphic with male values being higher than female values. A nine-variable model achieved the maximum classification accuracy of 90% with −2.9% sex bias and a six-variable model yielded 85.9% sexing accuracy with −0.97% sex bias. We conclude that the skull is highly dimorphic and represents a reliable bone for sex determination in contemporary Tunisian individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. White TD, Black MT, Folkens PA (2012) Human Osteology. Elsevier, Paris

    Google Scholar 

  2. Işcan MY, Steyn M (2013) The human skeleton in forensic medicine. Charles C Thomas Publisher ltd. Springfield, Illinois

    Google Scholar 

  3. Işcan MY (2005) Forensic anthropology of sex and body size. Forensic Sci Int 147:107–112

    Google Scholar 

  4. Scheuer L (2002) Application of osteology to forensic medicine. Clin Anat 15:297–312

    PubMed  Google Scholar 

  5. Stojanowski CM, Seidemann RM, Doran GH (2002) Differential skeletal preservation at Windover Pond: causes and consequences. Am J Phys Anthropol 119:15–26

    PubMed  Google Scholar 

  6. Walker P (1995) Problems of preservation and sexism in sexing: some lessons from historical collections for palaeodemographers. In: Saunders SR, Herring A (eds) Grave reflections portraying the past through cemetery studies. Canadian Scholaris Press Inc., Toronto 18:31–48

  7. Guyomarc’h P, Dutailly B, Charton J et al (2014) Anthropological facial approximation in three dimensions (AFA3D): computer-assisted estimation of the facial morphology using geometric morphometrics. J Forensic Sci 59:1502–1516

    PubMed  Google Scholar 

  8. Giles E, Elliot O (1963) Sex determination by discriminant function analysis of crania. Am J Phys Anthropol 21:53–68

    CAS  PubMed  Google Scholar 

  9. Franklin D, Cardini A, Flavel A, Kuliukas A (2013) Estimation of sex from cranial measurements in a Western Australian population. Forensic Sci Int 229:158.e1–158.e8

    Google Scholar 

  10. Ogawa Y, Imaizumi K, Miyasaka S, Yoshino M (2013) Discriminant functions for sex estimation of modern Japanese skulls. J Forensic Legal Med 20:234–238

    Google Scholar 

  11. Dirkmaat DC, Cabo LL, Ousley SD, Symes SA (2008) New perspectives in forensic anthropology. Am J Phys Anthropol (suppl 47):33–52

  12. Guyomarc’h P, Bruzek J (2011) Accuracy and reliability in sex determination from skulls: a comparison of Fordisc 3.0 and the discriminant function analysis. Forensic Sci Int 208:30–35

    Google Scholar 

  13. Bidmos MA, Dayal MR (2004) Further evidence to show population specificity of discriminant function equations for sex determination using the talus of South African blacks. J Forensic Sci 49:1165–1170

    PubMed  Google Scholar 

  14. Weisensee KE, Jantz RL (2011) Secular changes in craniofacial morphology of the Portuguese using geometric morphometrics. Am J Phys Anthropol 145:548–559

    PubMed  Google Scholar 

  15. Spradley MK, Jantz RL, Robinson A, Peccerelli F (2008) Demographic change and forensic identification: problems in metric identification of Hispanic skeletons. J Forensic Sci 53:21–28

    PubMed  Google Scholar 

  16. Ramsthaler F, Kreutz K, Verhoff MA (2007) Accuracy of metric sex analysis of skeletal remains using Fordisc based on a recent skull collection. Int J Legal Med 121:477–482

    CAS  PubMed  Google Scholar 

  17. Franklin D, Cardini A, Flavel A et al (2013) Concordance of traditional osteometric and volume-rendered MSCT inter-landmark cranial measurements. Int J Legal Med 127:505–520

    PubMed  Google Scholar 

  18. Verhoff MA, Ramsthaler F, Krähahn J et al (2008) Digital forensic osteology—possibilities in cooperation with the Virtopsy project. Forensic Sci Int 174:152–156

    PubMed  Google Scholar 

  19. Citardi MJ, Herrmann B, Hollenbeak CS et al (2001) Comparison of scientific calipers and computer-enabled CT review for the measurement of Skull Base and Craniomaxillofacial dimensions. Skull Base 11:5–11

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lou L, Lagravere MO, Compton S et al (2007) Accuracy of measurements and reliability of landmark identification with computed tomography (CT) techniques in the maxillofacial area: a systematic review. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology 104:402–411

    Google Scholar 

  21. Stull KE, Tise ML, Ali Z, Fowler DR (2014) Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Sci Int 238:133–140

    PubMed  Google Scholar 

  22. Hajjej A, Kâabi H, Sellami MH et al (2006) The contribution of HLA class I and II alleles and haplotypes to the investigation of the evolutionary history of Tunisians. Tissue Antigens 68:153–162

    CAS  PubMed  Google Scholar 

  23. Cherni L, Pakstis AJ, Boussetta S et al (2016) Genetic variation in Tunisia in the context of human diversity worldwide. Am J Phys Anthropol 00:00–00

    Google Scholar 

  24. Buikstra J, Ubelaker D (1994) Standards for data collection from human skeletal remains. Semin. F. Museum Nat. Hist

  25. Piquet M (1954) L'indice orbitaire et l’appréciation de la largeur de l’orbite ; essai de standardisation. Bull Mem Soc Anthropol Paris 100–112

  26. Howells WW (1989) Skull shapes and the map: craniometric analyses in the dispersion of modern Homo. Pap Peabody Museum Archaeol Ethnol 79

  27. Howells WW (1977) Cranial variation in man. A study by multivariate analysis of patterns of difference among recent human populations. J Hum Evol 6:513–514

    Google Scholar 

  28. Ekizoglu O, Hocaoglu E, Inci E et al (2016) Assessment of sex in a modern Turkish population using cranial anthropometric parameters. Legal Med 21:45–52

    PubMed  Google Scholar 

  29. May H, Mali Y, Dar G et al (2012) Intracranial volume, cranial thickness, and hyperostosis frontalis interna in the elderly. Am J Hum Biol 24:812–819

    PubMed  Google Scholar 

  30. Martin R (1928) Becken. In: Lehrb der Anthropol Syst darstellung mit Bes berücksichtigung der Anthropol methoden pp 1031–1037:1120–1133

    Google Scholar 

  31. Lovich JE, Gibbons JW (1992) A review of techniques for quantifying sexual size dimorphism. Growth Dev Aging 56:269–281

    CAS  PubMed  Google Scholar 

  32. Smith RJ (1999) Statistics of sexual size dimorphism. J Hum Evol 36:423–458

    CAS  PubMed  Google Scholar 

  33. Perini TA, de Oliveira GL, Ornelia JS, de Oliveira FP (2005) Technical error of measurement in anthropometry. Rev Bras Med do Esporte 11:81–85

    Google Scholar 

  34. Ulijaszek SJ, Kerr DA (1999) Anthropometric measurement error and the assessment of nutritional status. Br J Nutr 82:165

    CAS  PubMed  Google Scholar 

  35. Goto R, Mascie-Taylor CGN (2007) Precision of measurement as a component of human variation. J Physiol Anthropol 26:253–256

    PubMed  Google Scholar 

  36. Multicentre WHO, Reference G, Group S et al (2006) Reliability of anthropometric measurements in the WHO multicenter growth reference study. Acta Paediatr Suppl 450:47–55

    Google Scholar 

  37. Grivas CR, Komar DA (2008) Kumho, Daubert, and the nature of scientific inquiry: implications for forensic anthropology. J Forensic Sci 53:771–776

    PubMed  Google Scholar 

  38. Merlino ML, Springer V, Kelly JS, Hammond D (2007) Meeting the challenges of the Daubert trilogy: refining and redefining the reliability of forensic evidence. Tulsa L Rev 43:417

    Google Scholar 

  39. Steadman DW, Adams BJ, Konigsberg LW (2006) Statistical basis for positive identification in forensic anthropology. Am J Phys Anthropol 131:15–26

    PubMed  Google Scholar 

  40. Sholts SB, Flores L, Walker PL, Wärmländer SKTS (2011) Comparison of coordinate measurement precision of different landmark types on human crania using a 3D laser scanner and a 3D digitizer: implications for applications of digital morphometrics. Int J Osteoarchaeol 21:535–543

    Google Scholar 

  41. Ross AH, Williams S (2008) Testing repeatability and error of coordinate landmark data acquired from crania. J Forensic Sci 53:782–785

    PubMed  Google Scholar 

  42. Nagaoka T, Kawakubo Y, Hirata K (2012) Evidence for temporal and social differences in cranial dimensions in edo-period Japanese. Int J Osteoarchaeol 22:409–422

    Google Scholar 

  43. Kranioti EF, Işcan MY, Michalodimitrakis M (2008) Craniometric analysis of the modern Cretan population. Forensic Sci Int 180:1–5

    Google Scholar 

  44. Guyomarc’h P, Bruzek J (2010) Dimorphisme sexuel du crâne de sujets identifiés (collection Olivier, MNHN, Paris): Évaluation par morphométrie géométrique. Bull Mem Soc Anthropol Paris 22:216–229

    Google Scholar 

  45. Zavando Matamala DA, Suazo Galdames IC, Smith RL (2009) Sexual dimorphism determination from the lineal dimensions of skulls. Int J Morphol 27:133–137

    Google Scholar 

  46. Steyn M, Işcan MY (1998) Sexual dimorphism in the crania and mandibles of South African whites. Forensic Sci Int 98:9–16

    CAS  PubMed  Google Scholar 

  47. Rooppakhrun S, Piyasin S, Sitthiseripratip K (2009) 3D CT craniometric study of Thai skulls relevance to sex determination using logistic regression analysis. IFMBE Proc 23:761–764

    Google Scholar 

  48. Birkby WH (1966) An estimation of race and sex identification from the cranial measurements. Am J Phys Anthropol 42:21–27

    Google Scholar 

  49. Johnson DR, O’Higgins P, Moore WJ, McAndrew TJ (1989) Determination of race and sex of the human skull by discriminant function analysis of linear and angular dimensions. Forensic Sci Int 41:41–53

    CAS  PubMed  Google Scholar 

  50. Molto JE (1979) The assessment and meaning of intra-observer error in population studies based on discontinuous cranial traits. Am J Phys Anthropol 51:333–344

    CAS  PubMed  Google Scholar 

  51. Franklin D, Freedman L, Milne N (2005) Sexual dimorphism and discriminant function sexing in indigenous South African crania. HOMO- J Comp Hum Biol 55:213–228

    CAS  Google Scholar 

  52. Mehta M, Saini V, Nath S, Menon SK (2015) CT scan images for sex discrimination—a preliminary study on Gujarati population. J Forensic Radiol Imaging 3:43–48

    Google Scholar 

  53. Green H, Curnoe D (2009) Sexual dimorphism in Southeast Asian crania: a geometric morphometric approach. HOMO- J Comp Hum Biol 60:517–534

    Google Scholar 

  54. Saini V, Srivastava R, Rai RK et al (2011) An osteometric study of northern Indian populations for sexual dimorphism in craniofacial region. J Forensic Sci 56:700–705

    PubMed  Google Scholar 

  55. Dayal MR, Spocter MA, Bidmos MA (2008) An assessment of sex using the skull of black South Africans by discriminant function analysis. HOMO- J Comp Hum Biol 59:209–221

    CAS  Google Scholar 

  56. Sangvichien S, Boonkaew K, Chuncharunee A et al (2007) Sex determination in Thai skulls by using craniometry: multiple logistic regression analysis. Siriraj Med J 59:216–221

    Google Scholar 

  57. Krüger GC, L'Abbé EN, Stull KE, Kenyhercz MW (2015) Sexual dimorphism in cranial morphology among modern South Africans. Int J Legal Med 129:869–875

    PubMed  Google Scholar 

  58. Williams FLE, Richtsmeier JT (2003) Comparison of mandibular landmarks from computed tomography and 3D digitizer data. Clin Anat 16:494–500

    PubMed  Google Scholar 

  59. Lynnerup N, Astrup JG, Sejrsen B (2005) Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med 1:13

    PubMed  PubMed Central  Google Scholar 

  60. Ross AH, Jantz RL, McCormick WF (1998) Cranial thickness in American females and males. J Forensic Sci 43:267–272

    CAS  PubMed  Google Scholar 

  61. Lynnerup N (2001) Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci Int 117:45–51

    CAS  PubMed  Google Scholar 

  62. Albert AM, Ricanek K, Patterson E (2007) A review of the literature on the aging adult skull and face: implications for forensic science research and applications. Forensic Sci Int 172:1–9

    PubMed  Google Scholar 

  63. De Boer HH, Van der Merwe AE, Soerdjbalie-Maikoe V (2016) Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. Int J Legal Med 130:1371–1377

    PubMed  PubMed Central  Google Scholar 

  64. Doual M, Ferri J, Laude M (1997) The influence of senescence on craniofacial and cervical morphology in humans. Surg Radiol Anat 19:175–183

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Aycha Ben Miled for her valuable help in the manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Zaafrane.

Ethics declarations

Conflict of interest

None declared.

Electronic supplementary material

ESM 1

(PDF 153 kb)

ESM 2

(PDF 231 kb)

ESM 3

(PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaafrane, M., Ben Khelil, M., Naccache, I. et al. Sex determination of a Tunisian population by CT scan analysis of the skull. Int J Legal Med 132, 853–862 (2018). https://doi.org/10.1007/s00414-017-1688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1688-1

Keywords

Navigation