Skip to main content
Log in

Determining sex by bone volume from 3D images: discriminating analysis of the tali and radii in a contemporary Spanish reference collection

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The discriminant power of bone volume for determining sex has not been possible to determine due to the difficulty in its calculation. At present, new advancements based on 3D technology make it possible to reproduce the bone digitally and calculate its volume using computerized tools, which opens up a new window to ascertaining the discriminant power of this variable. With this objective in mind, the tali and radii of 101 individuals (48 males and 53 females) of a contemporary Spanish reference collection (twentieth century) (EML 1) were scanned using the Picza 3D Laser Scanner. Calculated for the tali were total volume, the volume of the posterior region, which includes the posterior calcaneal facet and other three volumes of the anterior region. Calculated for the radius were total volume, volume of the radius head, volume of the diaphysis, and volume of the distal end. The data are presented for all of the variables, distinguishing between the right and left side. The data were processed using the statistical program PASW Statistics 18, thereby obtaining classification functions for sex which accurately classify 90.9 % of tali and 93.9 % of radii on the basis of their total left and right volume, respectively. Studying the volume in different regions of the bone shows that the diaphysis of the right radius possesses a high level of discriminant power, offering classification functions which accurately classify 96.9 % of the sample. The validation test performed on a sample of 20 individuals from another contemporary Spanish reference collection (EML 2) confirms the high discriminant power of the volume obtaining an accurate classification rate of 80–95 % depending on the variable studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steel DG (1976) The estimation of sex on the basis of the talus and calcaneus. Am J Phys Anthropol 45:581–588

    Article  Google Scholar 

  2. Gualdi-Russo E (2007) Sex determination from the talus and calcaneus measurements. Forensic Sci Int 17:151–156

    Article  Google Scholar 

  3. Berrizbeitia EL (1989) Sex determination with the head of the radius. J Forensic Sci 34(5):1206–1213

    PubMed  CAS  Google Scholar 

  4. Barrier ILO, L’Abbé EN (2008) Sex determination from the radius and ulna in a modern South African sample. Forensic Sci Int 179:85.e1–85.e7

    Article  CAS  Google Scholar 

  5. Machado-Mendoza D, Pablo-Pozo J (2008) Estudio del dimorfismo sexual del radio en europoides cubanos. Rev Esp Antropol Fís 28:81–86

    Google Scholar 

  6. Singh S, Singh SP (1975) Identification of sex from tarsal bones. Acta Anat 93:568–573

    Article  PubMed  CAS  Google Scholar 

  7. Todd TW, Kuenzel W (1925) The estimation of cranial capacity: a comparison of the direct water and seed methods. Am J Phys Anthropol 8(3):251–259

    Article  Google Scholar 

  8. Stewart TD (1934) Cranial capacity studies. Am J Phys Anthropol 23(3):337–361

    Article  Google Scholar 

  9. Uspenskii S (1954) A new method for measuring cranial capacity. Am J Phys Anthropol 22:115–117

    Article  Google Scholar 

  10. Mackinnon L, Kennedy JA, Davies TV (1956) Estimation of skull capacity from roentgenologic measurements. Am J Roentgenol Radium Ther Nucl Med 76(2):303–310

    PubMed  CAS  Google Scholar 

  11. Jorgensen JB, Quaade F (1956) The external cranial volume as an estimate of cranial capacity. Am J Phys Anthropol 14(4):661–664

    Article  PubMed  CAS  Google Scholar 

  12. Kaufman B, David CJ (1972) A method of infracranial volume calculation. Invest Radiol 7:533–538

    Article  PubMed  CAS  Google Scholar 

  13. Olivier G, Tissier H (1975) Determination of cranial capacity in fossil men. Am J Phys Anthropol 43(3):353–362

    Article  Google Scholar 

  14. Mayhew TM, Olsen DR (1991) Magnetic resonance imaging (MRI) and model-fore brain estimates of forebrain volume determined using the Cavalieri principle. J Anat 178:133–144

    PubMed  CAS  Google Scholar 

  15. Steven RL (1992) Cranial capacity evolution in Homo erectus and early Homo sapiens. Am J Phys Anthropol 87(1):1–13

    Article  Google Scholar 

  16. Baab KL, McNulty KP (2008) Size, shape and asymmetry in fossil hominids: the status of the LB1 cranium based on 3D morphometric analyses. J Hum Evol 30:1–15

    Google Scholar 

  17. Lorenzo C, Carretero JM, Arsuaga JL, Gracia A, Martínez I (1998) Intrapopulational body size variation and cranial capacity variation in Middle Pleistocene humans: the Sima de los Huesos sample (Sierra de Atapuerca, Spain). Am J Phys Anthropol 106(1):19–33

    Article  PubMed  CAS  Google Scholar 

  18. Butaric LN, McCarthy RC, Broadfild DC (2010) A preliminary 3D computed tomography study of the human maxillary sinus and nasal cavity. Am J Phys Anthropol 143(3):426–436

    Article  PubMed  Google Scholar 

  19. Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: An MRI-volumetric study. Am J Phys Anthropol 118(4):341–358

    Article  PubMed  Google Scholar 

  20. Craig JG, Cody DD, Van Holsbeeck M (2004) The distal femoral and proximal tibial growth plates: MR imaging, three-dimensional modeling and estimation of area and volume. Skeletal Radiol 33:337–344

    Article  PubMed  Google Scholar 

  21. Cicuttini F, Forbes A, Morris K, Darling S, Bailey M, Stuckey S (1999) Gender differences in knee cartilage volume as measured by magnetic resonance imaging. Osteoarthr Cart 7:265–271

    Article  CAS  Google Scholar 

  22. Faber SC, Eckstein F, Lukasz S, Muhlbauer R, Hohe J, Englmeier KH, Reiser M (2001) Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging. Skeletal Radiol 30:144–150

    Article  PubMed  CAS  Google Scholar 

  23. Kranioti EF, Nathena D, Michalodimitrakis M (2011) Sex estimation of the Cretan humerus: a digital radiometric study. Int J Legal Med 125:659–667

    Article  PubMed  Google Scholar 

  24. Hsiao TH, Tsai SM, Chou ST, Pan JY, Tseng YC, Chang HP, Chen HS (2010) Sex determination using discriminant function analysis in children and adolescents: a lateral cephalometric study. Int J Legal Med 124:155–160

    Article  PubMed  Google Scholar 

  25. Macalauso PJ (2011) Sex discrimination from the glenoid cavity in black South Africans: morphometric analysis of digital photographs. Int J Legal Med 125:773–778

    Article  Google Scholar 

  26. Sholts SB, Wärmländer S, Flores LM, Miller K, Walker PL (2010) Variation in the measurement of cranial volume and surface area using 3D laser scanning technology. J Forensic Sci 55(4):871–875

    Article  PubMed  Google Scholar 

  27. Pretorius E, Steyn M, Scholtz Y (2006) Investigation into the usability of geometric morphometric analysis in assessment of sexual dimorphism. Am J Phys Anthropol 129:64–70

    Article  PubMed  CAS  Google Scholar 

  28. Bytheway JA, Ross AH (2010) A geometric morphometric approach to sex determination of the human adult os coxa. J Forensic Sci 55(4):859–864

    Article  PubMed  Google Scholar 

  29. Giancoli DC (1997) Física, principios con aplicaciones. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We thank the Computer Center of Universidad Complutense de Madrid for the availability of the 3D scanner, and we specially thank Pedro Cuesta Álvaro for the revision of the statistical study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Labajo González.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. 6

Point 1 and point 2 anterior volume 1 (JPEG 132 kb)

High-resolution image (TIFF 1103 kb)

Fig. 7

Anterior volume 1 (JPEG 50 kb)

High-resolution image (PNG 50 kb)

Fig. 8

Point 2 anterior volume 2 and 3 (JPEG 206 kb)

High-resolution image (TIFF 1472 kb)

Fig. 9

Point 1 anterior volume 2 (JPEG 225 kb)

High-resolution image (TIFF 1983 kb)

Fig. 10

Anterior volume 2 (JPEG 62 kb)

High-resolution image (PNG 62 kb)

Fig. 11

Point 1 anterior volume 3 (JPEG 235 kb)

High-resolution image (TIFF 1901 kb)

Fig. 12

Anterior volume 3 (JPEG 82 kb)

High-resolution image (PNG 82 kb)

Fig. 13

Point 1 and 2 posterior volume (JPEG 233 kb)

High-resolution image (TIFF 2420 kb)

Fig. 14

Posterior volume (JPEG 63 kb)

High-resolution image (PNG 63 kb)

Fig. 15

Point 1 and 2 head volume (JPEG 216 kb)

High-resolution image (TIFF 1771 kb)

Fig. 16

Head volume (JPEG 32 kb)

High-resolution image (PNG 32 kb)

Fig. 17

Point 1 and 2 distal end volume (JPEG 156 kb)

High-resolution image (TIFF 1292 kb)

Fig. 18

Distal end volume (JPEG 32 kb)

High-resolution image (PNG 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz Mediavilla, E., Perea Pérez, B., Labajo González, E. et al. Determining sex by bone volume from 3D images: discriminating analysis of the tali and radii in a contemporary Spanish reference collection. Int J Legal Med 126, 623–631 (2012). https://doi.org/10.1007/s00414-012-0715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0715-5

Keywords

Navigation