Skip to main content

Advertisement

Log in

GSR deposition along the bullet path in contact shots to composite models

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In contact shots, all the materials emerging from the muzzle (combustion gases, soot, powder grains, and metals from the primer) will be driven into the depth of the entrance wound and the following sections of the bullet track. The so-called “pocket” (“powder cavity”) under the skin containing soot and gunpowder particles is regarded as a significant indicator of a contact entrance wound since one would expect that the quantity of GSR deposited along the bullet's path rapidly declines towards the exit hole. Nevertheless, experience has shown that soot, powder particles, and carboxyhemoglobin may be found not only in the initial part of the wound channel, but also far away from the entrance and even at the exit. In order to investigate the propagation of GSRs under standardized conditions, contact test shots were fired against composite models of pig skin and 25-cm-long gelatin blocks using 9-mm Luger pistol cartridges with two different primers (Sinoxid® and Sintox®). Subsequently, 1-cm-thick layers of the gelatin blocks were examined as to their primer element contents (lead, barium, and antimony as discharge residues of Sinoxid® as well as zinc and titanium from Sintox®) by means of X-ray fluorescence spectroscopy. As expected, the highest element concentrations were found in the initial parts of the bullet tracks, but also the distal sections contained detectable amounts of the respective primer elements. The same was true for amorphous soot and unburned/partly burned powder particles, which could be demonstrated even at the exit site. With the help of a high-speed motion camera it was shown that for a short time the temporary cavitation extends from the entrance to the exit thus facilitating the unlimited spread of discharge residues along the whole bullet path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bakonyi F, Faragó E, Tomcsányi R (1970) Lassen die unterschiedlichen CO-Hämoglobin-Konzentrationen im Bereich von Ein- und Ausschuss Aussagen über die Schussrichtung und die Schußentfernung zu? Arch Kriminol 145:35–41

    Google Scholar 

  2. Dana SE, Di Maio VJM (2003) Gunshot trauma. In: Payne-James J, Busuttil A, Smock W (eds) Forensic medicine: clinical and pathological aspects. Greenwich Medical Media, London, pp 149–168

    Google Scholar 

  3. Di Maio VJM (1999) Gunshot wounds: practical aspects of firearms, ballistics, and forensic thechniques, 2nd edn. CRC Press, Boca Raton, pp 78–81, 125–127, 181, 236, 256

    Google Scholar 

  4. Dodd MJ (2006) Terminal ballistics: a text and atlas of gunshot wounds. CRC Press, Boca Raton, pp 137–142

    Google Scholar 

  5. Faller-Marquardt M, Bohnert M, Pollak S (2004) Detachment of the periosteum and soot staining of its underside in contact shots to the cerebral cranium. Int J Leg Med 118:343–347

    Article  CAS  Google Scholar 

  6. Große Perdekamp M, Braunwarth R, Schmidt U, Schmidt W, Pollak S (2003) Zum absoluten Nahschuss aus Infanteriewaffen mit Mündungsstück. Arch Kriminol 212:10–18

    Google Scholar 

  7. Große Perdekamp M, Kneubuehl BP, Serr A, Vennemann B, Pollak S (2006) Gunshot-related transport of micro-organisms from the skin of the entrance region into the bullet path. Int J Leg Med 120:157–164

    Article  Google Scholar 

  8. Große Perdekamp M, Pollak S, Thierauf A, Straßburger E, Hunzinger M, Vennemann B (2009) Experimental simulation of reentry shots using a skin-gelatine composite model. Int J Leg Med 123:419–425

    Article  Google Scholar 

  9. Große Perdekamp M, Vennemann B, Kneubuehl BP, Uhl M, Treier M, Braunwarth R, Pollak S (2007) Effect of shortening the barrel in contact shots from rifles and shotguns. Int J Leg Med 122:81–88

    Article  Google Scholar 

  10. Große Perdekamp M, Vennemann B, Mattern D, Serr A, Pollak S (2005) Tissue defect at the gunshot entrance wound: what happens to the skin? Int J Leg Med 119:217–222

    Article  Google Scholar 

  11. Heard BJ (1997) Handbook of firearms and ballistics: examining and interpreting forensic evidence. Wiley, Chichester, pp 161–167

    Google Scholar 

  12. Hoffmann R (1987) Geisterschmauch—eine Fehlermöglichkeit bei der Schußspurenuntersuchung. Arch Kriminol 179:13–23

    Google Scholar 

  13. Jussila J (2004) Preparing ballistic gelatine—review and proposal for a standard method. Forensic Sci Int 141:91–98

    Article  CAS  PubMed  Google Scholar 

  14. Karger B (2008) Forensic ballistics. In: Tsokos M (ed) Forensic pathology reviews, vol 5. Humana Press, Totowa, pp 139–172

    Chapter  Google Scholar 

  15. Kneubuehl BP, Coupland RM, Rothschild MA, Thali MJ (2008) Wundballistik. Grundlagen und Anwendungen. Springer, Heidelberg, pp 143–162

    Google Scholar 

  16. Lew E, Dolinak D, Matshes E (2005) Firearm injuries. In: Dolinak D, Matshes EW, Lew EO (eds) Forensic pathology: principles and practice. Elsevier Academic Press, Burlington, pp 163–200

    Google Scholar 

  17. Lichtenberg W (1985) Schußspurenuntersuchung in Verbindung mit Munitionsarten mit “bleifreiem” Pulverschmauch. Beitr Gerichtl Med 43:293–300

    CAS  PubMed  Google Scholar 

  18. Lieske K, Janssen W, Kulle K-J (1991) Intensive gunshot residues at the exit wound: an examination using a head model. Int J Leg Med 104:235–238

    Article  CAS  Google Scholar 

  19. Menzies RC, Seraggie RJ, Labowitz D (1981) Characteristics of silenced firearms and their wounding effects. J Forensic Sci 26:239–262

    CAS  PubMed  Google Scholar 

  20. Meyer W (1908) Die Kriterien des Nahschusses bei Verwendung rauchschwacher Pulver. Vierteljahresschr Gerichtl Med 35:22–37

    Google Scholar 

  21. Paltauf A (1890) Über die Einwirkung von Pulvergasen auf das Blut und einen neuen Befund beim Nahschuss. Wien Klin Wochenschr 3:984–991, 1015–1017

    Google Scholar 

  22. Pollak S, Reiter C (1986) CO-Hämoglobin in Gefäßbezirken abseits des Schusskanals. In: Eisenmenger W, Liebhardt E, Schuck M (eds) Medizin und Recht. Festschrift für Wolfgang Spann. Springer, Berlin Heidelberg New York, pp 261–267

    Google Scholar 

  23. Pollak S, Rothschild MA (2004) Gunshot injuries as a topic of medicolegal research in the German-speaking countries from the beginning of the 20th century up to the present time. Forensic Sci Int 144:201–210

    Article  CAS  PubMed  Google Scholar 

  24. Pollak S, Saukko P (2003) Atlas of forensic medicine (CD-ROM). Elsevier, Amsterdam, Chapter 7

    Google Scholar 

  25. Pollak S, Saukko PJ (2009) Gunshot wounds. In: Jamieson A, Moenssens A (eds) Wiley encyclopedia of forensic science. Wiley, Chichester, pp 1380–1401

    Google Scholar 

  26. Polson CJ, Gee DJ, Knight B (1985) The essentials of forensic medicine, 4th edn. Pergamon, Oxford New York Toronto, p 201, 220–211

    Google Scholar 

  27. Saukko P, Knight B (2004) Knight's forensic pathology, 3rd edn. Arnold, London, pp 245–280

    Google Scholar 

  28. Schyma CWA (2010) Colour contrast in ballistic gelatine. Forensic Sci Int 197:114–118

    Article  CAS  PubMed  Google Scholar 

  29. Schyma C, Madea B (2010) Schussspurensicherung. Praktischer Umgang mit Schuss- und Schmauchspuren. Rechtsmed 20:123–136

    Article  Google Scholar 

  30. Sellier KG, Kneubuehl BP (1994) Wound ballistics and the scientific background. Elsevier, Amsterdam, pp 188–207

    Google Scholar 

  31. Smock WS (2000) Evaluation of gunshot wounds. In: Siegel JA, Saukko PJ, Knupfer GC (eds) Encyclopedia of forensic sciences, vol 1. Academic, London, pp 378–384

    Google Scholar 

  32. Spitz WU (2006) Injury by gunfire. In: Spitz WU (ed) Spitz and Fisher's medicolegal investigation of death, 4th edn. Thomas, Springfield, pp 607–746

    Google Scholar 

  33. Stein KM, Bahner ML, Merkel J, Ain S, Mattern R (2000) Detection of gunshot residues in routine CTs. Int J Leg Med 114:15–18

    Article  CAS  Google Scholar 

  34. Vennemann B, Dautel F, Braunwarth R, Straßburger E, Hunzinger M, Pollak S, Große Perdekamp M (2008) Textile fibres along the bullet path—experimental study on a skin-gelatine composite model. Int J Leg Med 122:213–218

    Article  CAS  Google Scholar 

  35. Vennemann B, Große Perdekamp M, Kneubuehl BP, Serr A, Pollak S (2007) Gunshot-related displacement of skin particles and bacteria from the exit region back into the bullet path. Int J Leg Med 121:105–111

    Article  CAS  Google Scholar 

  36. Warlow TA (1996) Firearms, the law and forensic ballistics. Taylor & Francis, London, pp 70–71, pp 198–199

    Google Scholar 

  37. Wojahn H (1968) CO-Hb-Konzentration im Schußkanal als Zeichen des Nahschusses. Beitr Gerichtl Med 24:190–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Große Perdekamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Große Perdekamp, M., Arnold, M., Merkel, J. et al. GSR deposition along the bullet path in contact shots to composite models. Int J Legal Med 125, 67–73 (2011). https://doi.org/10.1007/s00414-010-0529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-010-0529-2

Keywords

Navigation