Skip to main content
Log in

Regulation of the meiotic prophase I to metaphase I transition in mouse spermatocytes

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The meiotic prophase I to metaphase I transition (G2/MI) involves disassembly of synaptonemal complex (SC), chromatin condensation, and final compaction of morphologically distinct MI bivalent chromosomes. Control of these processes is poorly understood. The G2/MI transition was experimentally induced in mouse pachytene spermatocytes by okadaic acid (OA), and kinetic analysis revealed that disassembly of the central element of the SC occurred very rapidly after OA treatment, before histone H3 phosphorylation on Ser10. These events were followed by relocalization of SYCP3 and final condensation of bivalents. Enzymatic control of these G2/MI transition events was studied using small molecule inhibitors: butyrolactone I (BLI), an inhibitor of cyclin-dependent kinases (CDKs) and ZM447439 (ZM), an inhibitor of aurora kinases (AURKs). The formation of highly condensed MI bivalents and disassembly of the SC are regulated by both CDKs and AURKs. AURKs also mediate phosphorylation of histone H3 in meiosis. However, neither BLI nor ZM inhibited disassembly of the central element of the SC. Thus, despite evidence that the metaphase promoting factor is a universal regulator of the onset of cell division, desynapsis, the first and key step of the G2/MI transition, occurs independently of BLI-sensitive CDKs and ZM-sensitive AURKs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams RR, Maiato H, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–880

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, Dix DJ, Collins BW, Merrick BA, He C, Selkirk JK, Poorman-Allen P, Dresser ME, Eddy EM (1996) Hsp70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma 104:414–421

    Article  PubMed  CAS  Google Scholar 

  • Arlot-Bonnemains Y, Klotzbucher A, Giet R, Uzbekov R, Bihan R, Prigent C (2001) Identification of a functional destruction box in the Xenopus laevis aurora-A kinase pEg2. FEBS Lett 508:149–152

    Article  PubMed  CAS  Google Scholar 

  • Ashley T, Gaeth AP, Creemers LB, Hack AM, de Rooij DG (2004) Correlation of meiotic events in testis sections and microspreads of mouse spermatocytes relative to the mid-pachytene checkpoint. Chromosoma 113:126–136

    Article  PubMed  Google Scholar 

  • Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC (2004) Positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin Rec8. Genesis 40:184–194

    Article  PubMed  CAS  Google Scholar 

  • Bellve AR (1993) Purification, culture, and fractionation of spermatogenic cells. Methods Enzymol 225:84–113

    Article  PubMed  CAS  Google Scholar 

  • Belmont AS (2006) Mitotic chromosome structure and condensation. Curr Opin Cell Biol 18:632–638

    Article  PubMed  CAS  Google Scholar 

  • Bolcun-Filas E, Costa Y, Speed R, Taggart M, Benavente R, de Rooij DG, Cooke HJ (2007) Syce2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J Cell Biol 176:741–747

    Article  PubMed  CAS  Google Scholar 

  • Bui HT, Yamaoka E, Miyano T (2004) Involvement of histone H3 (ser10) phosphorylation in chromosome condensation without Cdc2 kinase and mitogen-activated protein kinase activation in pig oocytes. Biol Reprod 70:1843–1851

    Article  PubMed  CAS  Google Scholar 

  • Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–854

    Article  PubMed  CAS  Google Scholar 

  • Chan RC, Severson AF, Meyer BJ (2004) Condensin restructures chromosomes in preparation for meiotic divisions. J Cell Biol 167:613–625

    Article  PubMed  CAS  Google Scholar 

  • Chieffi P, Troncone G, Caleo A, Libertini S, Linardopoulos S, Tramontano D, Portella G (2004) Aurora B expression in normal testis and seminomas. J Endocrinol 181:263–270

    Article  PubMed  CAS  Google Scholar 

  • Cobb J, Reddy RK, Park C, Handel MA (1997) Analysis of expression and function of topoisomerase I and II during meiosis in male mice. Mol Reprod Dev 46:489–498

    Article  PubMed  CAS  Google Scholar 

  • Cobb J, Cargile B, Handel MA (1999a) Acquisition of competence to condense metaphase I chromosomes during spermatogenesis. Dev Biol 205:49–64

    Article  PubMed  CAS  Google Scholar 

  • Cobb J, Miyaike M, Kikuchi A, Handel MA (1999b) Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase II alpha localization and chromosome condensation. Chromosoma 108:412–425

    Article  PubMed  CAS  Google Scholar 

  • Colledge WH, Carlton MB, Udy GB, Evans MJ (1994) Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 370:65–68

    Article  PubMed  CAS  Google Scholar 

  • Costa Y, Speed R, Ollinger R, Alsheimer M, Semple CA, Gautier P, Maratou K, Novak I, Hoog C, Benavente R, Cooke HJ (2005) Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis. J Cell Sci 118:2755–2762

    Article  PubMed  CAS  Google Scholar 

  • Crane R, Gadea B, Littlepage L, Wu H, Ruderman JV (2004) Aurora A, meiosis and mitosis. Biol Cell 96:215–229

    Article  PubMed  CAS  Google Scholar 

  • Crosio C, Fimia GM, Loury R, Kimura M, Okano Y, Zhou H, Sen S, Allis CD, Sassone-Corsi P (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian aurora kinases. Mol Cell Biol 22:874–885

    Article  PubMed  CAS  Google Scholar 

  • de Rooij DG, de Boer P (2003) Specific arrests of spermatogenesis in genetically modified and mutant mice. Cytogenet Genome Res 103:267–276

    Article  PubMed  Google Scholar 

  • de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A (2005) Mouse SYCP1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389

    Article  PubMed  CAS  Google Scholar 

  • Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N, Taylor SS (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161:267–280

    Article  PubMed  CAS  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, Goulding EH, Eddy EM (1996) Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci USA 93:3264–3268

    Article  PubMed  CAS  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Poorman-Allen P, Mori C, Blizard DR, Brown PR, Goulding EH, Strong BD, Eddy EM (1997) HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 124:4595–4603

    PubMed  CAS  Google Scholar 

  • Dobson MJ, Pearlman RE, Karaiskakis A, Spyropoulos B, Moens PB (1994) Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J Cell Sci 107:2749–2760

    PubMed  CAS  Google Scholar 

  • Eaker S, Pyle A, Cobb J, Handel MA (2001) Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice. J Cell Sci 114:2953–2965

    PubMed  CAS  Google Scholar 

  • Eijpe M, Heyting C, Gross B, Jessberger R (2000) Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113:673–682

    PubMed  CAS  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C (2003) Meiotic cohesin Rec8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 160:657–670

    Article  PubMed  CAS  Google Scholar 

  • Evans EP, Breckon G, Ford CE (1964) An air-drying method for meiotic preparations from mammalian testes. Cytogenetics 15:289–294

    Article  PubMed  CAS  Google Scholar 

  • Furukawa Y, Iwase S, Terui Y, Kikuchi J, Sakai T, Nakamura M, Kitagawa S, Kitagawa M (1996) Transcriptional activation of the Cdc2 gene is associated with Fas-induced apoptosis of human hematopoietic cells. J Biol Chem 271:28469–28477

    Article  PubMed  CAS  Google Scholar 

  • Gadea BB, Ruderman JV (2005) Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 16:1305–1318

    Article  PubMed  CAS  Google Scholar 

  • Godet M, Thomas A, Rudkin BB, Durand P (2000) Developmental changes in cyclin B1 and cyclin-dependent kinase 1 (CDK1) levels in the different populations of spermatogenic cells of the post-natal rat testis. Eur J Cell Biol 79:816–823

    Article  PubMed  CAS  Google Scholar 

  • Godet M, Damestoy A, Mouradian S, Rudkin BB, Durand P (2004) Key role for cyclin-dependent kinases in the first and second meiotic divisions of rat spermatocytes. Biol Reprod 70:1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274:25543–25549

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom KA, Meyer BJ (2003) Condensin and cohesin: more than chromosome compactor and glue. Nat Rev Genet 4:520–534

    Article  PubMed  CAS  Google Scholar 

  • Hamer G, Gell K, Kouznetsova A, Novak I, Benavente R, Hoog C (2006) Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex. J Cell Sci 119:4025–4032

    Article  PubMed  CAS  Google Scholar 

  • Handel MA, Caldwell KA, Wiltshire T (1995) Culture of pachytene spermatocytes for analysis of meiosis. Dev Genet 16:128–139

    Article  PubMed  CAS  Google Scholar 

  • Handel MA, Cobb J, Eaker S (1999) What are the spermatocyte’s requirements for successful meiotic division? J Exp Zool 285:243–250

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto N, Watanabe N, Furuta Y, Tamemoto H, Sagata N, Yokoyama M, Okazaki K, Nagayoshi M, Takeda N, Ikawa Y et al (1994) Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 370:68–71

    Article  PubMed  CAS  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  PubMed  CAS  Google Scholar 

  • Heyting C, Dietrich AJ, Redeker EJ, Vink AC (1985) Structure and composition of synaptonemal complexes, isolated from rat spermatocytes. Eur J Cell Biol 36:307–314

    PubMed  CAS  Google Scholar 

  • Heyting C, Moens PB, van Raamsdonk W, Dietrich AJ, Vink AC, Redeker EJ (1987) Identification of two major components of the lateral elements of synaptonemal complexes of the rat. Eur J Cell Biol 43:148–154

    PubMed  CAS  Google Scholar 

  • Hunter N (2003) Synaptonemal complexities and commonalities. Mol Cell 12:533–535

    Article  PubMed  CAS  Google Scholar 

  • Inselman A, Handel MA (2004) Mitogen-activated protein kinase dynamics during the meiotic G2/MI transition of mouse spermatocytes. Biol Reprod 71:570–578

    Article  PubMed  CAS  Google Scholar 

  • Jelinkova L, Kubelka M (2006) Neither aurora B activity nor histone H3 phosphorylation is essential for chromosome condensation during meiotic maturation of porcine oocytes. Biol Reprod 74:905–912

    Article  PubMed  CAS  Google Scholar 

  • Kimmins S, Crosio C, Kotaja N, Hirayama J, Monaco L, Hoog C, van Duin M, Gossen JA, Sassone-Corsi P (2007) Differential functions of the aurora-B and aurora-C kinases in mammalian spermatogenesis. Mol Endo 21:726–739

    Article  CAS  Google Scholar 

  • Kouznetsova A, Novak I, Jessberger R, Hoog C (2005) SYCP2 and SYCP3 are required for cohesin core integrity at diplotene but not for centromere cohesion at the first meiotic division. J Cell Sci 118:2271–2278

    Article  PubMed  CAS  Google Scholar 

  • Lipp JJ, Hirota T, Poser I, Peters JM (2007) Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J Cell Sci 120:1245–1255

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ (1998) Cyclin A1 is required for meiosis in the male mouse. Nat Genet 20:377–380

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Liao C, Wolgemuth DJ (2000) A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 224:388–400

    Article  PubMed  CAS  Google Scholar 

  • Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165:2283–2287

    PubMed  CAS  Google Scholar 

  • Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, Heyting C (1992) A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J 11:5091–5100

    PubMed  CAS  Google Scholar 

  • Moens PB (1995) Histones H1 and H4 of surface-spread meiotic chromosomes. Chromosoma 104:169–174

    Article  PubMed  CAS  Google Scholar 

  • Nickerson HD, Joshi A, Wolgemuth DJ (2007) Cyclin A1-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis. Dev Biol 306:725–735

    Article  PubMed  CAS  Google Scholar 

  • Nishio K, Ishida T, Arioka H, Kurokawa H, Fukuoka K, Nomoto T, Fukumoto H, Yokote H, Saijo N (1996) Antitumor effects of butyrolactone I, a selective Cdc2 kinase inhibitor, on human lung cancer cell lines. Anticancer Res 16:3387–3395

    PubMed  CAS  Google Scholar 

  • Novak I, Wang H, Revenkova E, Jessberger R, Scherthan H, Hoog C (2008) Cohesin SMC1beta determines meiotic chromatin axis loop organization. J Cell Biol 180:83–90

    Article  PubMed  CAS  Google Scholar 

  • Odorisio T, Rodriguez TA, Evans EP, Clarke AR, Burgoyne PS (1998) The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nat Genet 18:257–261

    Article  PubMed  CAS  Google Scholar 

  • Offenberg HH, Schalk JA, Meuwissen RL, van Aalderen M, Kester HA, Dietrich AJ, Heyting C (1998) Scp2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res 26:2572–2579

    Article  PubMed  CAS  Google Scholar 

  • Page J, de la Fuente R, Gomez R, Calvente A, Viera A, Parra MT, Santos JL, Berrios S, Fernandez-Donoso R, Suja JA, Rufas JS (2006) Sex chromosomes, synapsis, and cohesins: a complex affair. Chromosoma 115:250–259

    Article  PubMed  Google Scholar 

  • Parra MT, Viera A, Gomez R, Page J, Carmena M, Earnshaw WC, Rufas JS, Suja JA (2003) Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J Cell Sci 116:961–974

    Article  PubMed  CAS  Google Scholar 

  • Parra MT, Viera A, Gomez R, Page J, Benavente R, Santos JL, Rufas JS, Suja JA (2004) Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Pelttari J, Hoja MR, Yuan L, Liu JG, Brundell E, Moens P, Santucci-Darmanin S, Jessberger R, Barbero JL, Heyting C, Hoog C (2001) A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 21:5667–5677

    Article  PubMed  CAS  Google Scholar 

  • Pezzi N, Prieto I, Kremer L, Perez Jurado LA, Valero C, Del Mazo J, Martinez AC, Barbero JL (2000) STAG3, a novel gene encoding a protein involved in meiotic chromosome pairing and location of STAG3-related genes flanking the Williams–Beuren syndrome deletion. FASEB J 14:581–592

    PubMed  CAS  Google Scholar 

  • Prieto I, Suja JA, Pezzi N, Kremer L, Martinez AC, Rufas JS, Barbero JL (2001) Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3:761–766

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R (2001) Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol 21:6984–6998

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–562

    Article  PubMed  CAS  Google Scholar 

  • Scrittori L, Hans F, Angelov D, Charra M, Prigent C, Dimitrov S (2001) pEg2 aurora-A kinase, histone H3 phosphorylation, and chromosome assembly in Xenopus egg extract. J Biol Chem 276:30002–30010

    Article  PubMed  CAS  Google Scholar 

  • Sette C, Barchi M, Bianchini A, Conti M, Rossi P, Geremia R (1999) Activation of the mitogen-activated protein kinase ERK1 during meiotic progression of mouse pachytene spermatocytes. J Biol Chem 274:33571–33579

    Article  PubMed  CAS  Google Scholar 

  • Swain JE, Ding J, Brautigan DL, Villa-Moruzzi E, Smith GD (2007) Proper chromatin condensation and maintenance of histone H3 phosphorylation during mouse oocyte meiosis requires protein phosphatase activity. Biol Reprod 76:628–638

    Article  PubMed  CAS  Google Scholar 

  • Swain JE, Ding J, Wu J, Smith GD (2008) Regulation of spindle and chromatin dynamics during early and late stages of oocyte maturation by aurora kinases. Mol Hum Reprod 14:291–299

    Article  PubMed  CAS  Google Scholar 

  • Swedlow JR, Hirano T (2003) The making of the mitotic chromosome: modern insights into classical questions. Mol Cell 11:557–569

    Article  PubMed  CAS  Google Scholar 

  • Takemoto A, Murayama A, Katano M, rano T, Furukawa K, Yokoyama S, Yanagisawa J, Hanaoka F, Kimura K (2007) Analysis of the role of aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res 35:2403–2412

    Article  PubMed  CAS  Google Scholar 

  • Tang CJ, Lin CY, Tang TK (2006) Dynamic localization and functional implications of aurora-C kinase during male mouse meiosis. Dev Biol 290:398–410

    Article  PubMed  CAS  Google Scholar 

  • Tarsounas M, Pearlman RE, Moens PB (1999) Meiotic activation of rat pachytene spermatocytes with okadaic acid: the behaviour of synaptonemal complex components SYN1/SCP1 and COR1/SCP3. J Cell Sci 112:423–434

    PubMed  CAS  Google Scholar 

  • Tsai CJ, Mets DG, Albrecht MR, Nix P, Chan A, Meyer BJ (2008) Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit. Genes Dev 22:194–211

    Article  PubMed  CAS  Google Scholar 

  • Viera A, Parra MT, Page J, Santos JL, Rufas JS, Suja JA (2003) Dynamic relocation of telomere complexes in mouse meiotic chromosomes. Chromosome Res 11:797–807

    Article  PubMed  CAS  Google Scholar 

  • Viera A, Gomez R, Parra MT, Schmiesing JA, Yokomori K, Rufas JS, Suja JA (2007) Condensin I reveals new insights on mouse meiotic chromosome structure and dynamics. PLoS ONE 2:e783

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein D (1984) The synaptonemal complex and genetic segregation. Symp Soc Exp Biol 38:195–231

    Google Scholar 

  • Wiltshire T, Park C, Caldwell KA, Handel MA (1995) Induced premature G2/M-phase transition in pachytene spermatocytes includes events unique to meiosis. Dev Biol 169:557–567

    Article  PubMed  CAS  Google Scholar 

  • Wooten MW (2002) In-gel kinase assay as a method to identify kinase substrates. Sci STKE 2002(153):pl15

    Article  PubMed  Google Scholar 

  • Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8:949–961

    Article  PubMed  CAS  Google Scholar 

  • Yang F, De La Fuente R, Leu NA, Baumann C, McLaughlin KJ, Wang PJ (2006) Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol 173:497–507

    Article  PubMed  CAS  Google Scholar 

  • Yao LJ, Sun QY (2005) Characterization of aurora-A in porcine oocytes and early embryos implies its functional roles in the regulation of meiotic maturation, fertilization and cleavage. Zygote 13:23–30

    Article  PubMed  CAS  Google Scholar 

  • Yao LJ, Zhong ZS, Zhang LS, Chen DY, Schatten H, Sun QY (2004) Aurora-A is a critical regulator of microtubule assembly and nuclear activity in mouse oocytes, fertilized eggs, and early embryos. Biol Reprod 70:1392–1399

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C (2000) The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5:73–83

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Hoog C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Christa Heyting for providing antibodies to SYCP1 and REC8. We are grateful to Drs. John Eppig, Sophie La Salle, Laura Reinholdt, and Lindsay Shopland for providing critical comments on the manuscript. We wish to thank Heather Lothrop for maintaining the mice, and Dr. Jim Denegre and Bobbi-Jo Shirley of the biological imaging facility for assistance. This work was supported by a grant from the NIH to MAH (HD33816) and a Cancer Center Core Grant to The Jackson Laboratory (CA34196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ann Handel.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, F., Handel, M.A. Regulation of the meiotic prophase I to metaphase I transition in mouse spermatocytes. Chromosoma 117, 471–485 (2008). https://doi.org/10.1007/s00412-008-0167-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0167-3

Keywords

Navigation