Skip to main content

Advertisement

Log in

Radioprotective effects produced by the condensation of plasmid DNA with avidin and biotinylated gold nanoparticles

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The treatment of aqueous solutions of plasmid DNA with the protein avidin results in significant changes in physical, chemical, and biochemical properties. These effects include increased light scattering, formation of micron-sized particles containing both DNA and protein, and plasmid protection against thermal denaturation, radical attack, and nuclease digestion. All of these changes are consistent with condensation of the plasmid by avidin. Avidin can be displaced from the plasmid at higher ionic strengths. Avidin is not displaced from the plasmid by an excess of a tetra-arginine ligand, nor by the presence of biotin. Therefore, this system offers the opportunity to reversibly bind biotin-labeled species to a condensed DNA–protein complex. An example application is the use of biotinylated gold nanoparticles. This system offers the ability to examine in better detail the chemical mechanisms involved in important radiobiological effects. Examples include protein modulation of radiation damage to DNA, and radiosensitization by gold nanoparticles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achanta G, Huang P (2004) Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species generating agents. Cancer Res 64:6233–6239

    Article  Google Scholar 

  • Balhorn R, Brewer L, Corzett M (2000) DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. Mol Reprod Dev 56:230–234

    Article  Google Scholar 

  • Bayer EA, Wilchek M (1990) Application of avidin-biotin technology to affinity-based separations. J Chromatogr 27:5103–5111

    Google Scholar 

  • Bloomfield VA (1996) DNA condensation. Curr Opin Struct Biol 6:334–341

    Article  Google Scholar 

  • Butterworth KT, Coulter JA, Jain S, Forker J, McMahon SJ, Schettino G, Prise KM, Currell FJ, Hirst DG (2010) Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology 21:295101

    Article  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–887

    Article  ADS  Google Scholar 

  • Cao H, Schuster GB (2005) Complex formation between a DNA duplex and lipid-like spermine derivatives: hydrophobic protection of DNA from one-electron oxidation. Bioconj Chem 16:820–826

    Article  Google Scholar 

  • Chatterjee DK, Hammond AW, Blakesley RW, Adams SM, Gerard GF (1991) Genetic organization of the KpnI restriction-modification system. Nucleic Acids Res 19:6505–6509

    Article  Google Scholar 

  • Conners R, Hooley E, Clarke AR, Thomas S, Brady RL (2006) Recognition of oxidatively modified bases within the biotin binding site of avidin. J Mol Biol 357:263–274

    Article  Google Scholar 

  • Costa D, Miguel MG, Lindman B (2007) Effect of additives on swelling of covalent DNA gels. J Phys Chem B 111:8444–8452

    Article  Google Scholar 

  • Daban JR (2003) High concentration of DNA in condensed chromatin. Biochem Cell Biol 81:91–99

    Article  Google Scholar 

  • Do TT, Tang VJ, Aguilera JA, Perry CC, Milligan JR (2011) Characterization of a lipophilic plasmid DNA condensate formed with a cationic peptide fatty acid conjugate. Biomacromolecules 12:1731–1737

    Article  Google Scholar 

  • Falabella JB, Cho TJ, Ripple DC, Hackley VA, Tarlov MJ (2010) Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering. Langmuir 26:12740–12747

    Article  Google Scholar 

  • Fant K, Esbjörner EK, Jenkins A, Grossel MC, Lincoln P, Norden B (2010) Effects of PEGylation and acetylation of PAMAM dendrimers on DNA binding, cytotoxicity and in vitro transfection efficiency. Mol Pharm 7:1734–1746

    Article  Google Scholar 

  • Green NM (1965) A spectrophotometric assay for avidin and biotin based on binding of dyes by avidin. Biochem J 94:23–24

    Google Scholar 

  • Green N (1975) Avidin. Adv Protein Chem 29:85–133

    Article  Google Scholar 

  • Haiss W, Nguyen TKT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79:4215–4221

    Article  Google Scholar 

  • Harada A, Kimura Y, Kono K (2010) Cationic polymers with inhibition ability of DNA condensation elevate gene expression. ChemBioChem 11:1985–1988

    Article  Google Scholar 

  • Hirayama K, Akashi S, Furuya M, Fukuhara K (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. Biochem Biophys Res Commun 173:639–646

    Article  Google Scholar 

  • Jain SS, Tullius TD (2008) Footprinting protein DNA complexes using the hydroxyl radical. Nat Protoc 3:1092–1100

    Article  Google Scholar 

  • Jonah CD, Rao BSM (2001) Radiation chemistry: present status and future trends. Elsevier, New York

    Google Scholar 

  • Kankia BI, Buckin V, Bloomfield VA (2001) Hexamminecobalt(III)-induced condensation of calf thymus DNA: circular dichroism and hydration measurements. Nucleic Acids Res 29:2795–2801

    Article  Google Scholar 

  • Knee KM, Dixit SB, Aitken CE, Ponomarev S, Beveridge DL, Mukerji I (2008) Spectroscopic and molecular dynamics evidence for a sequential mechanism for the A-to-B transition in DNA. Biophys J 95:257–272

    Article  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  • Kumar A, Sevilla MD (2010) Proton coupled electron transfer in DNA in formation of radiation produced ion radicals. Chem Rev 110:7002–7023

    Article  Google Scholar 

  • Lee JH, Kim SY, Kil IS, Park JW (2007) Regulation of ionizing radiation induced apoptosis by mitochondrial NADP+ dependent isocitrate dehydrogenase. J Biol Chem 282:13385–13394

    Article  Google Scholar 

  • Lee M, Urata SM, Aguilera JA, Perry CC, Milligan JR (2012) Modeling the influence of histone proteins on the sensitivity of DNA to ionizing radiation. Radiat Res 177:152–163

    Article  Google Scholar 

  • Lesch HP, Kaikkonen MU, Pikkarainen JT, Yla-Herttuala S (2010) Avidin biotin technology in targeted therapy. Expert Opin Drug Deliv 7:551–564

    Article  Google Scholar 

  • Livnah O, Bayer EA, Wilchek M, Sussman JL (1993) Three dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci USA 90:5076–5080

    Article  ADS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Mascotti DP, Lohman TM (1997) Thermodynamics of oligoarginines binding to RNA and DNA. Biochemistry 36:7272–7279

    Article  Google Scholar 

  • Mazier S, Vilette S, Goffinot S, Renouard S, Maurizot JC, Genest D, Spotheim-Maurizot M (2008) Radiation damage to a DNA binding protein. Combined circular dichroism and molecular dynamics simulation analysis. Radiat Res 170:604–612

    Article  Google Scholar 

  • McMahon SJ, Hyland WB, Brun E, Butterworth KT, Coulter JA, Douki T, Hirst DG, Jain S, Kavanagh AP, Krpetic Z, Mendenhall MH, Muir MF, Prise KM, Requardt H, Sanche L, Schettino G, Currell FJ, Sicard-Roselli C (2011) Energy dependence of gold nanoparticle radiosensitization in plasmid DNA. J Phys Chem C 115:20160–20167

    Article  Google Scholar 

  • Mei G, Pugliese L, Rosato N, Toma L, Bolognesi M, Finazzi-Agro A (1994) Biotin and biotin analogues specifically modify the fluorescence decay of avidin. J Mol Biol 242:559–565

    Article  Google Scholar 

  • Mei N, Kunugita N, Hirano T, Kasai H (2002) Acute arsenite induced 8-hydroxyguanine is associated with inhibition of repair activity in cultured human cells. Biochem Biophys Res Commun 297:924–930

    Article  Google Scholar 

  • Mergny JL, Lacroix L (2003) Analysis of thermal melting curves. Oligonucleotides 13:515–537

    Article  Google Scholar 

  • Milligan JR, Ward JF (1994) Yield of single-strand breaks due to attack on DNA by scavenger-derived radicals. Radiat Res 137:295–299

    Article  Google Scholar 

  • Milligan JR, Ng JY, Wu CC, Aguilera JA, Ward JF, Kow YW, Wallace SS, Cunningham RP (1996) Methylperoxyl radicals as intermediates in the damage to DNA irradiated in aqueous dimethyl sulfoxide with gamma rays. Radiat Res 146:436–443

    Article  Google Scholar 

  • Morpurgo M, Radu A, Bayer EA, Wilchek M (2004) DNA condensation by high-affinity interaction with avidin. J Mol Recognit 17:558–566

    Article  Google Scholar 

  • Nardone E, Rosano C, Santambrogio P, Curnis F, Corti A, Magni F, Siccardi AG, Paganelli G, Losso R, Apreda B, Bolognesi M, Sidoli A, Arosio P (1998) Biochemical characterization and crystal structure of a recombinant hen avidin and its acidic mutant expressed in Escherichia coli. Eur J Biochem 256:453–460

    Article  Google Scholar 

  • Newton GL, Aguilera JA, Ward JF, Fahey RC (1996) Polyamine-induced compaction and aggregation of DNA. A major factor in radioprotection of chromatin under physiological conditions. Radiat Res 145:776–780

    Article  Google Scholar 

  • Perry CC, Tang VJ, Konigsfeld KM, Aguilera JA, Milligan JR (2011) Use of a coumarin labeled hexa arginine peptide as a fluorescent hydroxyl radical probe in a nanopaticulate plasmid DNA condensate. J Phys Chem B 115:9889–9897

    Article  Google Scholar 

  • Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5:136–142

    Article  Google Scholar 

  • Raspaud E, Durand D, Livolant F (2005) Interhelical spacing in liquid crystalline spermine and spermidine-DNA precipitates. Biophys J 88:392–403

    Article  Google Scholar 

  • Ruedas-Rama MJ, Alvarez-Pez JM, Paredes JM, Talavera EM, Orte A (2010) Binding of BOBO-3 intercalative dye to DNA homo-oligonucleotides with different base compositions. J Phys Chem B 114:6713–6721

    Article  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  Google Scholar 

  • Spink CH, Wellman SE (2001) Thermal denaturation as a tool to study DNA ligand interactions. Methods Enzymol 340:193–211

    Article  Google Scholar 

  • Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Struthers L, Patel R, Clark J, Thomas S (1998) Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues. Anal Biochem 255:20–31

    Article  Google Scholar 

  • Tiera MJ, Shi Q, Winnik FM, Fernandes JC (2011) Polycation-based gene therapy: current knowledge and new perspectives. Curr Gene Ther 11:288–306

    Article  Google Scholar 

  • Tsoi M, Do TT, Tang V, Aguilera JA, Perry CC, Milligan JR (2010) Characterization of condensed plasmid DNA models for studying the direct effect of ionizing radiation. Biophys Chem 147:104–110

    Article  Google Scholar 

  • Udovicic L, Mark F, Bothe E (1996) Single strand breaks in double stranded DNA irradiated in anoxic solution: contribution of tert-butanol radicals. Radiat Res 146:198–205

    Article  Google Scholar 

  • Vilfan ID, Conwell CC, Sarkar T, Hud NV (2006) Time study of DNA condensate morphology: implications regarding the nucleation, growth, and equilibrium populations of toroids and rods. Biochemistry 45:8174–8183

    Article  Google Scholar 

  • von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, Philadelphia

    Google Scholar 

  • von Sonntag C (2006) Free radical induced DNA damage and its repair: a chemical perspective. Springer, New York

    Google Scholar 

  • Ward TR (2011) Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond. Acc Chem Res 44:47–57

    Article  Google Scholar 

  • Williams MC, Rouzina I, Wenner JR, Gorelick RJ, Musier-Forsyth K, Bloomfield VA (2001) Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching. Proc Natl Acad Sci USA 98:6121–6126

    Article  ADS  Google Scholar 

  • Xiao F, Zheng Y, Cloutier P, He Y, Hunting D, Sanche L (2011) On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology 22:465101

    Article  ADS  Google Scholar 

  • Yukihara EG, Yoshimura EM, Lindstrom TD, Ahmad S, Taylor KK, Mardirossian G (2005) High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters. Phys Med Biol 50:5619–5628

    Article  Google Scholar 

  • Zhang C, van der Maarel JR (2008) Surface-directed and ethanol-induced DNA condensation on mica. J Phys Chem B 112:3552–3557

    Article  Google Scholar 

  • Zsila F (2009) Novel circular dichroism spectroscopic approach for detection of ligand binding of proteins: avidin as an example. Anal Biochem 391:154–156

    Article  Google Scholar 

Download references

Acknowledgments

Supported by PHS grant CA46295. The authors thank Dr. Jonathan Neidigh for assistance with circular dichroic spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie R. Milligan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 803 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, C.C., Urata, S.M., Lee, M. et al. Radioprotective effects produced by the condensation of plasmid DNA with avidin and biotinylated gold nanoparticles. Radiat Environ Biophys 51, 457–468 (2012). https://doi.org/10.1007/s00411-012-0429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-012-0429-6

Keywords

Navigation